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ABSTRACT

Propagation of electromagnetic waves through a homogeneous aniso-
tropic column of a medium of Infinite length Is considered, The anisotropy of
the medlum is characterized by the dyadic form of the permittivity ¢ and per-
meabllity 4 . This anisotroplc column is surrounded by a coaxlal homogeneous
Isotroplc medlum characterized by scalars € ; and u,; , this complete structure
being enclosed by a perfectly conducting metallic circular cylindrical wave -
guide. A magnetic current ring source is inserted symmetrically in the iso-
tropic medium, Throughout the analysis the strength of the source Is con-
sidered to be an arbitrary function of the polar angle 6. For this general
problem the complete expressions for fields (due to the source), power flow,
and the dispersion relation have been studied,

To solve a source problem, dyadic Green's functions for both point
electric current source and point magnetic current source have been con-
structed In a formal way from the source free solutions of the appropriate
Maxwell's equations., These dyadic Green's functions can be used for any
arbitrary source,

From the general expressions for the transverse flelds in terms of the
longitudinal fields, in any arbitrary cylindrical reglon (unbounded) the propaga-

tion wave number of a TEM mode travelling In the longitudinal direction z has
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been obtained., The wave numbers for a TEM wave propagating In a direction
perpendicular to z, can be obtalned from the general expressions for the trans-

verse wave numbers, using

The results of the above general problem have been used to study the
wave propagation in an anisotropic plasma column and an anisotropic ferrite
column separately, The various possible passbands for the propagation of
electromagnetic waves in an anisotropic plasma column have been obtained and
a speclal case Is conslidered for numerical computation of the longltudinal
electric field In a plasma, The analysis for the plasma problem emphasizes the

slow wave propagation.

vi
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I
INTRODUCTION

Electromagnetic wave propagation through an anisotropic medium has
been studied by many authors in different situations - from ionosphere to con-
ventional waveguldes. Ionospheric anisotropy Is due to the presence of the
earth's static magnetic field. Ionized, but macroscopically neutral gases of any
kind are known as plasmas, An ionized and neutral stationary plasma In a weak
electromagnetic field can be represented as an equivalent dielectric medium,
Moreover, when this plasma is situated in a uniform statlc magnetic field, the
strength of which is not necessarily small, Its equivalent dielectric "constant"
behaves as a dyadic (tensor), It [s well known that radio wave propagation
through the lonosphere depends on the frequency of the electromagnetic wave,
electron density, the collision frequency, the lon gyrofrequency and the electron
gyrofrequency. The same I8 true for a wave propagating through a plasma
waveguide, This knowledge of the wave propagation is essentlal for satisfactory
long-distance radlo communication through the lonosphere,

The study of a plasma Is also of vital importance [n the field of thermo-
nuclear reactions, In a thermonuclear reactor a static magnetic fleld Is used
to confine and to heat a plasma, Many times it i3 desirable to obtain information

on the temperature, density, etc, of the plasma. Such Investigations which
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determine the characteristics and behavior of the plasma are known as 'plasma
diagnostics, "

Besides the above, the propagation of electromagnetic waves In plasma-
filled or partially plasma-filled waveguides has aroused considerable Interest
in recent years [6] [7] [8] , primarily because of possible applications to
the generation or amplification of microwaves, A medium whose dielectric
"constant" Is a tensor is called gyroelectriec,

On the other hand, there is another class of materials known as ferrites
which exhibit ferro-magnetic properties, The chemlcal composition of the

ferrites may be expressed [3] [18] by the formula MOFe, O3, where M

represents a metal, such as Mn, Fe, NI, Cu, Mg, Al, Co, etc, Although
ordinary iron (Fe) and nickel (Ni) possess ferromagnetic properties, they are

of little use as microwave components due to their high losses, But the ferrite
materials mentioned above, whose specific resistances are above 10° times
higher than those of the metals, with relative permeabllities ranging up to
several thousands and rel. .ve dielectric constants varying from 5 to 25, have
extensive use in microwave devices, In the presence of a static magnetic fleld
the permeability u of a ferrite becomes anisotropic, i.e., 4 becomes a dyadic,
which iIs the characteristic of a gyromagnetic medium, The medium whose

dielectric constant and permeability both are tensors, Is known as gyrotropic,
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In connection with the Faraday rotation of guided electromagnetic waves
In a gyromagnetic medium with a unlform static magnetic fleld in a circular
cylindrical waveguide (the axls of the wavegulde coincldes with the gyro-axis
which Is also the direction of the static magnetic fleld and has been taken as the
z-axls), Suhl and Walker [Z] have shown that only circularly polarized modes
exlst, If E, 7( 0, and H, # 0, and pure TE and TM modes do not exist,

However, pure TE and TM modes can exist Iif -;a;- = 0, It should be noted

that In this case as well as throughout the present work, the anisotropic medium
under consideration is homogeneous. For an anisotropic plasma medium TE
and TM modes can exist [7] independently in another special case when the
axlal-static magnetic fleld is infinite, Besides the above mentioned work, a
number of Investigators Including Van Trier [1] , Gamo [19] , Falnberg and
Gorbatenko (4], Agdur (6] . Epstein (3] . Trivelpiece [8] etc. have
carried out research In connection with wave propagation in gyroelectric, gyro-
magnetic, or gyrotropic media with various configurations. All of the research
work cited above except that In [7] considered only the source free resonance
behavior of electromagnetic waves, In the present problem, however, a source
of electromagnetic waves which Interact with the anisotropic medium Is included.

In Appendix A, a general formulation of the source-free problem Is presented

for any cylindrical geometry with arbitrary cross section, This formulation is
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suitable even for an unbounded anisotropic medium, provided cylindrical sym-
metry Is assumed. In Appendix B, dyadic Green's functions for a point source
(electric current or magnetic current or both) are constructed from the general
source free solutions of the Maxwell's equations for both dissipative and non-
dissipative medla, For such a construction of Dyadic Green's functions refer-
ences [9] , [11] , and [12] have been found very useful, An alternative
method using a transmlission line formulation can be devised for the construction
of Dyadic Green's functions.

In chapter 1 the problem considered Is to find the dispersion relations and
the complete flelds due to an excitation by a magnetic current ring source situated
In a cylindrical isotropic homogeneous medium characterized by a relative di-
electric constant € ; and a relative permeabllity u, , which encloses a central
cylindrical column of a homogeneous anisotropic medium characterized by
dyadics ¢ and K, this whole structure being enclosed by a perfectly conduct-
Ing cylindrical waveguide., This general analysis has avolded specifying any
particular medium, say a plasma or a ferrite, and also it does not necessarily
consider a ring source of constant strength, A ring source (magnetic current)
represents an idealization of a possible excitation, for example, a circumferen-

tial slot in the waveguide wall, or an annular slot on a thin metallic disc* fitting

*In this example one must also consider the boundary conditlon for the conducting
metallic disc,
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tightly across the waveguide, Although a ring source Is taken for analysis, any
other type of source can also be handled adequately since the formal expressions
for dyadic Green's functions for an electric current source and a point magnetic
current source are given in Appendix B, A magnetic current ring source Is more
appropriate for a plasma problem, whereas for a ferrite problem an electric
dipole at the center of a cross sectlon of a circular waveguide Is more appro-
priate,

In Appendix C, the general dispersion relation of Chapter I has been
evaluated In 2 number of Interesting speclal situations with appropriate limiting
processes, Although In these special cases the procedures are also applicable
to obtain expressions for the total fields due to the source from the general ex-
pressions given in Chapter I, no attempt has been made to obtain these expres-
sions owing to the laborious task they Involve,

Chapter II deals with a problem In which the anisotropic column Is taken
to be a plasma In an axial static magnetic field, using the results of Chapter I,
In this case necessary conditions for slow wave propagation (which give maxi-
mum passbands) have been obtalned, The sufficient condition and hence the
actual passbands can be obtained from the solution of the disperslon relation,
Since It Is not possible to study a dispersion relation In general, a few special

cases have been discussed, In addition to these a more general dispersion rela-
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tion for élow wave propagation has been conslidered for numerical computation
In Appendix D, In this case the lowest eigenvalues are found and the corres-
ponding longitudinal electric fleld Is calculated,

In Chapter III, the results of Chapter I have been applied to study wave
propagation through a ferrite column with a uniform axial static magnetic fleld,
It may be noted here that results for a ferrite problem can be obtained by using
duallty on the corresponding results for a plasma problem when the boundary
conditions on H In the ferrite are the same as those on E In the plasma, for
example an unbounded plasma and a ferrite,

From the formal expressions of the transverse electric and magnetic
flelds as functlons of the longitudinal fields E, and H, , and using the expres-
slons for the transverse propagation wave numbers obtained in Appendix A,
conditions for TEM wave propagation in the directlon parallel to or perpendi-
cular to the d, c, magnetic field have been obtained. These conditions provide
expressions for the propagation wave numbers In the respective cases. The
conditions which give the possibllity of a TEM wave propagation In an unbounded
medium cannot be valld in a bounded medium or in waveguides (except those
bounded by two non-connecting metallic boundaries), Therefore these discus~
slons suggest that the study of a dispersion relation for a bounded anisotropic

medium, under the condition of TEM wave propagation, Is meaningless and
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Inconsistent, It can be shown that the condition of TEM wave propagation In

the direction of the statlc magnetic flcld, Is equivalent to zero-value of the
product of the two transverse wave numbers. However, results for such a
situation have been presented In the literature mistakenly.* A reason for such
Inconslistent results may be that the authors overlooked the direct equivalent
relations between the conditlons of TEM waves travelling In the direction of

the static magnetic fleld and the vanishing conditions of the product of the trans-

verse wave numbers,

*Agdur, [ 6] pages 183 to 185, also (4] . page 4o7.
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I
GENERAL PROBLEM

Statement of the Problem

An infinltely long column of an anlsotropic medium character [zed by
tensors € and u, of radlus a, [s situated coaxially Inside a perfectly con-
ducting clrcular cylindrical waveguide of radius b, The annular space between
the column of the anisotropic medium and the cylindrical wavegulde Is filled
with an isotropic medium characterized by scalars €, and u,. The electro-
magnetic fields are introduced into this system by a magnetic current ring
source of radius c, the center of which lies on the axis of the waveguide, such
that a { ¢ £ b, The total fields and their behaviors are studled, Figure 1 shows

the geometry of the problem.

General Formulation of the Problem

For convenience the plane of the ring source will be chosen as z = 0,
where the axis of the cylinder lies along the z-axis, Due to the cylindrical
symmetry of the structure, cylindrical coordinates r, 6, and z will be used
here. If the ring source is very thin both In the radlal and in the axial direction,

It can be represented in the following way

1 =

=61 elut = Qom(e) S(r - c) 5(z) et (1)
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where w = excliting angular frequency
-610 = unlt vector In the 6-direction
m(6) = strength of the source in volts

S(r - c) and $(z) are well known Dirac-delta functions.

Magnetic Ring Current

Region 2
An isotropic medium
Metallic waveguide

Region 1 - An anisotropic medium

FIGURE 1

Although ultimately m(6) will be chosen as a constant for numerical
computational facility, the present formulation of the problem Is valid for m(6),
any arbitrary function of its argument 6.

The Maxwell's equations for this problem can be expressed (the time

dependence Is assumed to be ejwt) as
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(2)

where the relative dielectric constant ¢(r) and the relative permeabllity ﬁjr)

are defined in the following way.

0
érr kre
i(r) = - J€ op €00 0 ,for 0€rga (3a)
0 0 ezz
with constant elements
= €, (constant) , for agrghb (3b)
€rr = 699
(3c)
€r0° Sor
Hry ¥ro 0
’[;4’(1‘) = -per Hop 0 ||, for 0 r¢a (4a)
0 0 Koy

with constant elements

10
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= ug (constant) , foradrg¢b (4b)
Brr = Hog
(4c)
Brg = Hor

r In eqs. (2) represents a three dimensional position vector, and r is the
radlal coordinate, The results developed in Appendices A and B will be fre-
quently used In the following,

A method of solving any source problem in terms of Green's function
wlll be presented here, To construct a Green's function for a problem with
some given boundary conditions, it s sufficient to find corresponding eigen-
functions which form a complete orthogonal set, These elgenfunctions are solu-
tions of the source-free problem subject to the same boundary conditions.

In the present problem where the wavegulide is unlfonp (independent of z)
and the medium Is also homogeneous In the axlal direction z (i,e, , components
of € and y are not functions of the coordinate z, with € and u having forms
shown In (3) and (4) respectively), one can assume that there will be waves
propagating In the z-direction, having z-dependence as e¥Z  yhere X 1sa
propagation wave number for a particular mode, This assumption leads Max-
well's equations with appropriate boundary conditions, to an eigenvalue problem,

with X as an elgenvalue (see Appendix B and [9] to [13] )

11
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Thus the source-free solutions & y) (r) and 2_9 (r) satisfying the following

Maxwell's equations (5), form a complete orthogonal set of eigenfunctions.

ox £, = - pagu + X, @
4 ° £ 5"
Ux X = e e - £, @
The orthogonallty relation can be obtained by choosing another set
_é:z +(r) and 2_( }'(g), which satlsfy the same boundary conditions and the fol -
lowing Maxwell's equations,
vx&po = onyf*(r) - X pio) .
i * . (6)
x X pr) = g ) - €750 @

where * denotes complex conjugate,

et (or E') = adjoint of € (or g) = complex conjugate of the transpose
of € (or u).

Now It can be shown (see the above mentioned references) that the

required orthogonality relation Is

j S IR Z(t L0 x 2o ds = Ny = Sj X o - zoxE, POy
8

*In general the single Index Z (or[) is actually a double Index In (or i'n')
corresponding to radial and angular variations,

12
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where £ and £’ correspond to X g -th and X l'* -th modes (eigenvalues)

respectively,
z, = unlt vector In z-direction
Nl = normalization constant
= = %
515' 1, for)fl Xl

= 0, for)(l ¥)(ll*
6 " 6 "

L and _6_ (g are transverse components of _6_ Y, and & Y respectively, s Is
the cross section of the wavegulde,

Since In the present problem the only source is a magnetlc current, the

total flelds can be expressed In the following way, using the appropriate dyadic

Green's functions (eqs. (16b) and (17a) in Appendix B):

ZNﬂ

ad
5 £10) Xp(x) - 6y Ly (x) r' dz' dr' 40" )

-
!, (!') :"(L'_) o Qolm(ﬂ)r' dz' dr' do’ (9)
ZNI

r = observation position vector

r' = source position vector (i.e., primed coordinates refer to source)

and the time dependence et s suppressed everywhere,

13
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Using eq. (1), the above two expressions can be reduced to the following

forms
2r
E(r) = -c é_!;iz_) )(; (c, 6, 0) m(6') de (10)
2N 44
y/
0
and
2
)( (;) 1]
H(r) = -¢ E} ALY X (c, @, 0)m(6) do (11)
2N, )
0

L(g)

and )_( ‘..l (r) can be expressed as (the single index Ais replaced by the double

where )(él (c, 6', 0) is the 6-component of)_('iL(c, 6, 0), Ifél (r), l(

Index In):
En® = Al ®)
Ain @ = Ajpnegn @ (12)
in® = A &in @
and moreover If
B @ = gla(rme ™, 120 BS 1)

then the above expressions (10) and (11) can be reduced further to the following

14
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A A"
- 1 ln " o
E@ = - % Z <—_N_IE'> tin @ gy, €V my (14)

I,n in
Ay 1oAY
- _¢C 1in“*lin ~
Hip = -3 <_———Nln > &in () g, (¢) my (15)
i,n
where
2
ﬁ{n = S e 00 m(e) do (16a)
0
Aln and Ay are constants and f; (r) , and g'f, (r) are known functions,
I m(6') = m, a constant, thenn=0 [l.e. , -% = 0] and consequently
9
?ﬁn = 2rm (16b)

For n = 0, the above summation {8 no more than a single summation over I,

Now using (12) and the orthogonality relation

SS étln(z)_' x:m(g)xgods = Nip amn

it can be shown easily that

1"
Alin®in 1 1

Np  §§ @ - gD x20ds © 3” b

s ggrln(z) S'éln(i) _feln(s)g'l:ln(!-)] rdrdd
0 (18)

15
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Now using the above relation (18) In the expressions (14) and (15), It can be

shown that the complete flelds have the following forms

ﬁn -f-ln (!_) Bbm (c)

‘n 1" - 11
2 i[fm(ggem(g Lo (D€L ()] rdrde  (19)
H) = -¢ Z m g () g'g'LL(c)
2 " T
jo ﬁ:trm(g)g b - f em@gm@] rdrdé (20)

Although the above two expressions (19) and (20) are valid for both disslpative
and non-dissipative medla, the relation between i and g'l;l becomes simple In
the case of non-dissipative medium. Thus in a non-dissipative medium (see

Appendix B and [9] ) it can be shown that

&l £in = complex conjugate of g,

fin f’l‘n complex conjugate of f;

(21)

Therefore, for non-dissipative medium, the total electromagnetic fields are

given by the following expressions (using (21) ):

16
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=
p_—
=
#
1
(BT

Z, By £1n (1) 85pn (©)
mS

*b
So[fr n®Eom® - fem(z)z:ln(_r_)] rdrdd
0

Z By Ein () 8y (©)

T b
i,n f J [frln(yg;m(g) - fom(_l;)g:ln(g)] rdrdé
0 JO

wave number Xln (eigenvalue) In the z-direction is a real number,

tions

A= - A

iy @, Ky o €pge Hrg)

medium, can be expressed in the following way (using (24) ):

17
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-Lp, 'xln ~€pgr Heg = i;n(l)

(22)

(23)

It may be noted here that for non-dissipative medium the propagation

An alternative set of expressions for total electromagnetic fields which
are particularly suitable for dissipative media (although valid for non-dissipative

media also), can be obtained from (19) and (20) using the following transforma-

L (24)

x'l'n (E’XIn' 6!‘0' “re) = &ln (!_. ‘an 'Creo -“1'9) = i;n(E)

-

Thus the total fields, which are particularly sultable for a dlssl;;atlve
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W, £ () €on (©)
RS DI (25)
l'nj f[frm(l)%m‘i)‘fem(yfrm@] rdrdd
0Jo
m. (r) Ear. ()
HY - £ 57 n &in ' Bgin (26)
i,n

g
$ .i[frln(ggleln(g 'foln(E)Erm(z)] rdrdé
0

It should be pointed out here that for a dissipative medium, the propagation

wave number X in (elgenvalue) In the z-direction s complex,

Solutions of the Homogeneous (source-free) Maxwell's Equations

It has been demonstrated In Appendix A that for source-free and homo-
geneous (or for plecewise constant 4 and € ) medium the longitudinal (z-com-

ponent) components of electric and magnetic fields obey the following two

equations
vie o+ &g MewX 2n*
t , < by aj &, € b, a3 7z

2 B, ey € X
vt )(z + €pur 4 )(z - _e;.—ﬁr_—a3 Cz (28)

* To simplify notation, indices are omitted from both field quantities and X .

18
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where aj = Kk €. (uf. -u'z) -prx’-
= 12 2 _ 2y _ 2
a, k yr(cr €') efx
33 = “re' +“’€r

€rr = ‘66 = €4

o= €or = €
ezz = ‘Z

Her = Moo © ¥r
Hpg = Hor
b, = by

kZ = wzyoeo

The transverse flelds (I.e,, r and 6 components) can now be expressed

(see Appendix A) in terms of & 5 and X z In the following manner

1 z 2 .
-é.t = E[V‘a‘lvté'z TWg 8 vt ’(z]' %l.;x [k anVtéz + ijalvt )(z] (29)

and

z
A - -plT{jx%Vth ruea 6] X (a7, - soe, & ] o

19
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where a! = kze' Wi -/4'2) +)CZ/.4'

2

a, = kzu'(ei -¢'2) + e
o2 et -2

a, = k (ure.r+u ) -X

P = kha§ - af

It Is observed here that If 8y = 0, the two equations (27) and (28) become
uncoupled, * Although this Is a necessary condition that the conventional E-type
and H-type modes separate, it s not sufficient., The sufficlent condition depends
on the boundary conditions, For example, if the medium completely fills a
perfectly conducting wavegulde, and if a; =0, E-type and H-type modes can
exist separately. But on the other hand, If there are two coaxlal media, (the
outer one may or may not be bounded by a perfect conductor) E-type and H~type
modes can exist separately If and only If -'08_6_ = 0 (with ag = 0). Butlf
?86— 7 0, and even If a4 = 0, In the above two coaxial media-system E-type
and H-type modes cannot exist separately. A simllar discussion for Isotropic
media where a3 = 0, can be found In [16], sec, 11,6,

For the solution of (27 and (28) € , and X, can be eliminated ylelding
a single 4th degree equation Iln each otf.z and )( z which satisfy both of the

second degree equations (27) and (28), If a cholce is made such that¢=&z+ja)(z.

* TE and TM modes also decouple, i.e,, they can exlst separately if there
is a constant line source in the z-direction, In this case M- 0.
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then the equations (27) and (28) can be reduced to the following equation (for

detall see Appendix A):

VF gen?g = o (31)
where
6 J = 12 = “z = m
cruzr [4f -wegage] = 2* - i {"1 a ] (32)

Solving equation (32) for @, one obtains 1

- 2. 2.2 2 2
. - cza'l -pza1+[(a'1¢z-aluz) +4ko(2a3pz¢zj (33)

1,2
2w eo ‘z as)(

Therefore, the roots of 77'2 can also be expressed In the following way

71'7‘ - v:l/vz-u (34)

1,2
where
AL s 'Y
V = Zz z = 21 5 (358)
€ Hr
and c u
272 2 _k4a2
U= < [“4 3] ,
€ M 2 2
- _ Zz Z [ '
- H. €, =" 7]2 (35b)
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Equation (31) has the following form In polar coordinates

.2 2
1 98 o 1L 9% . - 36
r or rbr ré Tdsg_ ,1 (r) ¢ 0 (36)
where
12 12
7 (r) = N2 for 0rga (37a)
=;72 = 1P uy €, -2, foragrb (37b)
The general solution of (36) in the region containing the origin can be
written as

B2 = A dp (N relnd, n= 0l L£2... (38)*
for 0$l‘$a

and the solutions of (36) in the region ag r {(b, which correspond to longitudinal

fields, are given by

(1)
"

2= [B L Omecr N 0] B8 agrgn (39)

jné

)-(z [B"an(yr)+C§' Nn(yr) e

,a¢réb (40)*

*Ay, Ag, B"y, B";, C;' and C"; are arbitrary constants which depend on n and
r){) 2and 77, K not clearly indicated, these constants and radial propagation
wave numbers are understood to have the double index in,
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where Jn and Nn are Bessel's functions of the 1st kind and 2nd kind of order n

respectively,
Sce ¢ = €, *ja X, = A J O el and
b= & 1o X, = M3t DM,

it Is easy to verlfy that

jné 6
ez = _:l_e—_;z_ :,1 Aan("ﬁ r) - a; A Jn(7]'l r)], foro¢rga,
(41)
and jne
)/z = —QJ_e..—a- Az Jn (”2' r)“Al Jn (7{ r)]a foroér\(as
1-a3 | (42)
Since the boundary condition requires that
9
€, o = 0= —— ){z(r) .
=b r=b
the equations (39) and (40) can be rewritten In the following way
€, - B e, foragr¢h (43)
)(z = By Gy (r) elnf forag r¢b (44)

where
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/ox) = 3 (BN, (fr) - 3 () N, (b) (458)
G,(r) = J_(Ar) N! (qb) - 3} (b) N, (7r) (45b)
Bl"
B = - (45¢)
N_ (qb)
S (45d)
B N' (nb)
n
' _ _dN (yr)
N (7b) = — o) (45e)
r=b
J' (pb) = _?:_"1)}2 (45f)
" nr r=b

Now using equatlons (41) to (44), in the relations (29) and (30), the transverse
components of the source- free solutions of Maxwell's equation (5) can be expressed
as

jné@

= ‘j € 1 { 1 - 3 -_"In (ﬂf r)
ér- m [Ax{fz’h RJ, (0 ) -nwp € p 75 r (468)

Jn (M3 1)
+ A, { 52;,'2 T J1'1 (7 r)+ nwuocrurﬂ"l _n_r_}] )

for Ogrga
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€T= ——ﬂ—n:u jnO G (r) - jx Bl eJno Cn(r), forag l“ b
1 B
6 : ! I
é,= ejn— 1,3 1y ' Jn(ﬂl r)
0 Pl(d'l-az)ﬁz M 'Woﬂ el‘."lnz J ('71 r)‘ﬂl"zR
I r
+A,{wy°¢lur~n'f 759, (7) r)+nc T ——’— forOgrga
- jw“ (r)
ég= _-qﬁ' B, R S, (r)+—-&“2 B, ejno J: , foragrgb
"

_ein®

9 Med ud 3y (1 1)

¥ -

r

Pl(a, Dy (@ ~05) [Al{"fl R' Jp (fy i

ny;*8edud Jp(ns )

‘Az{’h T' Jy (M3 1)+ FPRRN

_ -“nweé 063

PV 4 jné
Bl ejnOJn (r) + j—i—.——

X 7

r 7’31‘

22 + 3

ErieM 72 M
Ae i a3

_ e,]nG

st [+

(o a’z)

I (ny 1)+

)éz

€ 10,8

———C 1 ! +
{chzuz ag Jn (72 r)

- jweo‘zBl jn9
'7

)(9= Cy (r)+ 3 ejnoG alr) .

7’1‘

25

Cz “z 33 r

} ] for 0 rga

S,(r), foragrghb

nR! .

T Jn(vl l‘)}

} }for 04rda
(49a)

for ag r{b
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(46b)

(47a)

(47b)

(48a)

(48b)

(49Db)




3
8= 2 .y}

“rer

1 2

€,a,
M = z€ ‘7’3

“r r

!

R =Xa4az-wuoag =
T = wpoa-.: -)(a4°'1 =
R' = We, 832 -~ Ka, =
T' = we 8,9 -Xa, =

8,(r) = 3 (LIN; (9r) -3y (r)Ny (b) = -

Cylr) = I, (D) Ny () -J3p (r) N, (7b) =

Dispersion Relation
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(50a)

(50b)

1
a,€.H.M - k‘eza3a2

UCOCZ ag (5OC)
e a8, - a,u € 8
73 4"r"r (50d)
weoez a3
M aqupe, ~Haga e, (50e)
Xage,
S aup€y -L agay €,
(50f)
X a3€.z
d
% < Gal0) (50g)
S
s ) (50h)

Since In the present problem the elgenvaluesx are discrete, the boundary

conditions satisfled by the total fields (. e,, the flelds due to the presence of

the source) are the same as those satisfied by any Individual fields (i.e., source-

free field),

Therefore, the following boundary conditions can be Imposed upon
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the source~free flelds, éz. Mz, 69 and 5‘9:

€,@) = & ") atr=a (51a)
€yla) = Eyla®) atr=a (51b)
&, =0 atr=b (51c)
&gb) = 0 atr=b (51d)
M, (@) =M, @") atr=a (51e)
Hy(a)) = Mglat) atr=a (51£)

The constructions of éz and 69 in ag r{b are made In such a way that
the boundary conditions (51c) and (51d) are now automatically satisfied, since
,sfn (b)=0=8, (b). If the remaining boundary conditions in (51) are imposed upon
the source-free flelds expressed in the equations (41) to (44) and (47) and (49),
the following relations among the arbitrary coefficients Ay, A;, B, and B, are

obtained:

_—laz—— [“'1 Ay 3y (04 8) -3 Ay Jn (M a)] = Bdya), (52a)

Ql -
—'———1 AL Jray Jn('rﬁ a)
P1 (al-az)cz[ Ay {"‘Vd‘r‘rﬂx'lz Jn(r]l a)+nezR - }
121 , Jn('f,; a)
th {“’“ocr“r'h']z Jh(z8)+ne, T ——

| Ieguny wt o Fa@
B Y &Sn(a)+ ,,2 B a

(52b)
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= [A, 3,3 a) - A dn(m a)] = B,Gp(a), (52¢)

MMM

2 3 '2 : '
Pl(a': '“z)ll:Al {;’:‘TZ; 3400y a)+— Jn("ha)} -A, 7__,1' (,,,'a)+n£_.1n(;ha} ]
A 1

e nX
=T (a) +
m AT

By Gpla) . (52d)

Non-trivial solutions for the constants A,, A,;, B;, and B, exlIst, If and
only If the determinant of the coefficients of these constants appearing in equations
(52) vanishes, The vanishing condition of the determinant gives the characteristic
equation (or dispersion relatlon)., Instead of calculating the determinant of the
coefficlents and then equating it to zero, one can also eliminate By and B, from
(52) and from the remaining equations it is easy to obtain two Independent values
of the ratlo A;/A;, Now equating these two values of A;/A;, one obtains the

desired dispersion relation expressed in the following:
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It should be noted here that to obtain the expresslons (53) and (54), some
useful relations (tabulated In Appendix A) have been used, These relations will
be used frequently in subsequent derivations,

When the ring-source m(6) is constant, n=0 (i.e,, -5%-50). In this case

it can be shown that the dispersion relation simplifies to

s{m‘z Go(a)Jl("l a)- qlu,S (a)d (ma)] ’l‘zl (a)dy(na)+&m C (a)Jo(ma) (
N{'ll-‘z Go(a)Jl('q, a)-744S,(a)d 62a} qezﬂa)Jl(q,a)+e,q, Co(a)do(nza)

5)

Alternatively, equation (55) can also be written In the following manner:

2_,'2 12_ 42 , ,
‘—";"q;wl-’ G, (@), (@), (n1a) Jytnja) - ‘ilz‘li‘lz’-’;i—’ Cola)S, (@) nia)dgtn3a)
1 zHz

J n(qia)Jl('I;a)
) €44 ,M; L‘z KM Co(a)Go(aH'uzczS/o (a)So(a)] (56)

)

J,128)3,(11)
€ zH 2

Ll

€1,8 Co(a)Go(a)ﬂt,‘zMJo(a)So(a)] =0

A number of dispersion relations for various special cases has been developed
in Appendix C,

The solution of the dispersion relation (54) together with the relations (34)
and (37b) gives an Infinite number of discrete values of v, , r); ,n (and hence X

also), The radial wave numbers ; and %), can also be called eigenvalues_in the.

domain 0<€r<a, and similarly ") is the eigenvalue in the domain a <r<b, of the
30
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uojje[ox uoysiadsip 9y} Y3noay) jus BAInbo axe Aoqy aouys ‘! §9 poudisse aq AvwW (8G) X0 (LG) SN[BA 94} JoWIO SIoUYM
(69) '§'v = tvao Tg = ly/fy e

[ethtem ot sPritl o- o175 rsertg Hhoke- (o) e 3 Lras(oy o P e Bl o ) 8
maﬁ&mﬁﬁawui o’nig .Ru«#u @uvnmu atrg,thek -(&) % %- Ik 3 ) lZrui(e)"n* %a«mb\au—?msnm_ﬁn.«r Wy

(89)
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Now using (59) and the relations (52a), (52c) of this chapter and (38(4)),
(38(10)), and (38(11) ) of Appendix A, one can express B, and B, in the following

manner;

A%, (60)

u

B,
B,

A3 (61)

where $%,J,00,8) - MJ (1 a)
5. - o (62)
a3 -1 o @

jw GOX£za3

('7;2 - 7);’)€,uan(a)

[!1 Iy (728) - Iy a)] (63)

™

Expressions for Source-Free Fields in Terms of Only One Unknown Constant A,

Since all the unknown coefficients A;, B, and B; are now expressible In
terms of the only one unknown A,, the source-free fields can be written In the

following way (e 'j“z""t)ls assumed to multiply all the expressions for the fields):

Alejne

€, = — [stlan,'r) - MJn(y',r)] = Af,, for0gréa  (64a)
02>

€, - A% ejnejn(r) = A f,, for a¢ r¢ b, (64b)
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Je, uzwebi(a3ejne
€, =

1 ' 1 (7);1')
IR 3 I:{‘Z%RJ,',(’III') R ‘rl-‘r’izz - }
€rherN 72 (’)z M) r

(65a)

1 1 ( r)
+ gl{n, T €,J', (93 ) +nup o€ 72 n?z }] = Afy, ... for0grga

2
Eo= Ae jne[ o !s(Gn(r) - j—;g s, Cn(r)] = Af,., ...for ag r&b (65b)

Tr
€ 7106 azelP0A Jn0p1r)
é - 2Fz 1 112 n
9 ; : TRV, N eh (X ;r) + n€ R }
Py U
(66a)
+£ S R Jn(’h'r) _
1\ WEH- 12 Jpl)sr) + n€x T = Afg, for0Ogrga,
r
£6= Alejne[ e ;d»‘z QSS (r)+ /(r)] = A fg, foragcreb, (66b)
jwe 3(a3 A, eJn®
ﬂz = ¢ -p) [‘1 Jn(mp 1) - Jn(’]{r)] = Ag,, for 0grga, (67a)
“r r 72 -
Hz= A ‘3ejn9 Gn(r) = Algz, for ag reb, (67b)
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J
#1‘ ) 202 2 2 [{v'lnd‘z“z 39h ('711')'*'!11"3 Mr 2 n(7l1r) }

r 1:71 72 (73 -71
(68a)

-5 7','1"1(62 Hy a9 (-7, r)+n 71 SC = Ag,, forO0<sr<a.

2 2 9, (r;,r)
S

W= pedR? [ ot g a/( Y4l

Sn(r)] = Ag,, for ag r¢b, (68b)
17 r

1 ' ] J (711')
3 2 12 12 2 _ er“i’h?:MJ' (711‘) +nRX€zpza3 —n'r——}

ey €y A [
r?l 2 (7

(69a)

U J ( r)
- tl éruzrv)lz']z SJ ("31‘) + nTXCZuza3 ,’2 }} = Ajgg, for0¢r¢a

~jwe, € nX‘
- A 00 |:j_"’7ig3_ Cplr) + 7r—3c,,(r):| = Ajgg, foragrgb, (69b)

Determination of the Constant A,

Determination of the unknown constant A, depends on the orthogonality
condition satisfied by the source-free flelds. Since orthogonality condlitions are

different* for a dissipative and a non-dissipative medium, the constant A, will also

* Although the forms of the orthogonality relation given in (22) of Appendix B are
valld for both dissipative and non-dissipative media, they are particularly
Suitable for dissipative media,

34




THE UNIVERSITY OF MICHIGAN ———m
4386-1-T

be different for the above-mentloned two media, Here A; wlll be calculated for
non-dissipative medium only, For dissipative medla the corresponding A; can be
calculated using equation (18) together with the transformations given In (24). The
primary alm here Is to calculate the total fields with amplitudes due to a given

source.z Therefore, to calculate total flelds it s only necessary to find the ratio

|8l
Nin

knowledge of source-free fields, 2as suggested In equatlon (18) together with (21),

for any mode (eigenvalue) In, This ratio can be determined from the

A
In other words, the ratio —N—l—— Is glven by
in

2
|A1 lnl 1
Nln 27
de [frl_n(ﬂ 8%tn(r) - fopn(T) g’i-[n(g)] r dr
0 0

(70)

The above Integral In (70) can be expressed in the following compact form

Nin s b . 32
N 2 - f dGS [frm(g) g*am(_x_'_)-feln(g)g";m(g)] rdr=2r E Finflin £
l lln’ o /o : -1 (71)
where
' *12 3 t *xt
Fla1 * Lln‘r“rl Tital ‘ZE‘I“r'lzlannﬁln - Mo i Ry Xin“za3] (12-1)

u

) 1 ’ x,
Finz = LinteésMiinTein buin€z [wioTeln Pindiopizes - RioCoirtilodin]  (72-2)
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% * *
_ ' ! 12 -
in3 Lln‘r“rez’)lln'l3m’11n[Tln‘r“r'I=1nM W i Rl zaS] (72-3)

)
1

i
n

L [ 25 FE LT N3 8 ] (712-4)
4 =t "’lnr l“lnl WK 110 T n¥ink 223 * €ckr TilinS1n -

W 2 2 \
Fios = |q—‘::‘lz[eoez|¥zm| INn(’]lnb)l +u i (S, r |Nn(,lnb) |2] (72-5)

Fing =" |’71nr [‘ ‘z|‘z l J("lnb) N, P+ o2 |‘sm|’Nn"'ln'°’J' (”"‘b)]
(72-6)

F ™ [c e,|£, r J (v;mb>§ (9,,0) ¥4 g |€ 3ln|2§'(1]mb)J (7P ]

in7 Pm 2L o in] n nfin n (72-)
Fos © I"lnlz [e €,|§,[n |J ("lnb)l +u J;,|¢3ln |J ('hnbﬂ (72-8)
F1119 i} nLinV'lin [ez z 3xm§:n in w“o“r"r”’iJ Mm] (72-9)

L]

33 1 *, X *
F = 2 - '
in10 - L 8 Hok e pm 2 Min Sin e’znmrinxmuzaﬂ (72-10)

- 3. 31.% 2 %
Foon © an'h in[e RinR X, 283 ~ WHE€ L Ky "]3 inl Min] (72-11)
2 *'2 2
Fian - n Line'x}‘re'z[Rin ',21,, in r“r “’“o"’in Rin"(in"‘z""‘3] (72-12)
_ 3 3 %12 12 * 2 * !
Fin13 - m”’in’g m[“mo rHrTh m’hmsin "zRinTinxin“za3:] (72-13)
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2 %t *12 %
inld ° insrurez,g u[“’“ VRPN ‘qn“zas - qulmsm¢rpr] (72-14)

F

12 %3
Fints = nliglayy & in[0H63 B2 it in iy + TinRindn€yisy 3] (72-15)

1 2 * t 3 31" *

Fin16 = -an’73 il“sl inr[‘z TinTin‘m“z% + wuoerur h1 mr Sm] (72‘16)
* 1 2 ' 33 12 x4 &

Fn17 = 2Ly m[‘z TinRin®inHz23 ¥ M€ M Niip Tagy My (72-17)

2
Fitg = ® g8t in€oe€ L Tinta My €, B + 0 bty R # ua]  (12-18

F11119

-an'i'mlﬁlml'[‘hm'ﬁmnuzas + w#off.ui |7':1,,f §m] (72-19)

"
]

= - 72-20
in20 °°" Linlglhj € M€, w"oTinxin in#za3 in'hin mC H ] (72-20)

jn 2 2 x1
Tm21 T g [raeasy B, 5 g o8, (o 00,8, Bo B 0q, 0N 9, 0]
(72-21)

rxf
]

in22 ?»‘7 Hngn 53in™nMn bIN, ('Imb)'k""zg E2m n("mb)N ) |
(12-22

34 s,mb)J ;) Y Ha€a 531“?2 ("inb)}n(vinbﬂ
(72-23)

‘)zmﬂm[ 24n° 31n
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*x§
d

2 * ! * * %!
in24 * :lﬁx%i;[k gy 3 Ol N, (00 851, Eo 9,1, N 07, 0
(72-24)

_ n 3 *! 2 * ' *
Fin2s = —)'5;’{"1:15211}3m"n("mb)J n{ M)k “’ezgsmgzm"n(’lmb”n('lmb)]
Yin'in (72-25)

* *y
Finze ° ’lnﬁ [“ Hy ’g3in§21an(7inb)N (M0~ ‘?mgzmgsm"n(’lmbmn(’lmb)]
n (12-26)

2 ! 2 X
Fino7 = "m?nm [k “"’esmgzm n(”mb)Nn("inb)"'mgzingsm"n("mbmn('?mb)]

(72-27)

_ jn 2 * K b) k b)N'
Tinzs T 7 ¥ LI BN W “’"gsmgsz PN )]
in'in (72-28)

2
wdl '
Finze ﬁ[‘o" Igzmlzl"n("mb) Iz tHS |§3in|2|Jn("inb) r] (72-29)
n® Wit

Fin30 = ——_-":nizn [toczlEzmr an(')mb)"-f- uoyzlgsmlz IN'n(,,mb)lzJ (72-30)

Fina1 =~ ’i‘ [ 2m|23n("mbmn(’7inb) H o“’lssmlz};(”mbm;("mb)]

(72-31)
nw*n
Fin32 T Tl lg’i | J me)N ("mb)“‘ “2|§3in, J (”inb)N ("inb):]
'lml (72-32)
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2.2 2
Lo WEEZH, *ma3
- 12 } ) 13 14 2 (73)
in 4 4 ,, ( _,’ )
By | 14 T2in Tagn 1y I

Iinl =i E]’;(V,'lml‘) 3;(')'1 inr)] rdr (74-1)
' ' *t ?
Iin2 =i Ernmlinr) Jn(v zinr)] rdr (74-2)
Iin3 ja['(q' r)J ('! r)] rdr (74-3)
0
a
La = S [J (r),inr) J (7’1 ] rdr (74-4)
3 _
|. %* ¥ .
Iin5 = § Jn(")mr) Jn(’)inr) rdr (74-5)
J -
[ *! .
Iln6 = Jn(qmr) Nn(qmr)_ rdr (74-6)
b
Im., j[J (1) r)N ("}mr) rdr (74-7)
a
Lg * S [N (7 N €, r)] (74-8)
a
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J (thr)J (qIIB] dr

J' (vimr) kj (7,3i r)] dr

J ("‘inr) J (711 !')] dr

J ("llnr)J (731 r)] dr

w |
\6
$ 5T ] o
!
ik

f[ J (v)mr) ; (hmr)] o
0

J (’)zinr)J (',11 r)] dr

S
S FJ (?ai r) }n('q;mr)] dr

J (')3 r) 5 ('qlinr)] dr
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J ("ainr) J (”unr)J &

J (4 r)J (n21 :]dr

dr
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b
' *
Ih127 = S ,:Jn(v'mr) Nn(‘qmr)] dr (74-27)
a
' *
L og = § [Jn(y, . Jn(qinr)] dr (74-28)
a
3
N (), )N (1 r)]
n 'in in
L20 g[ - dr (74-29)
a
%*
J (4, r)J (4 r) ]
- n 'in° n !in
Lo = §|: - dr (74~30)
a
J (1 DN (9 1)
_ n 'in n 'in
L © §[ - ] dr (74-31)
a
b %
J (1 )N (g r)]
n ‘in n ‘in
Iin32 = S[ T dr (74-32)
a
It may be noted here that for n = 0 (i.e., when %5 0), Finl =0, for £ 29

and all the integrals Iml, for £ £ 8 can be evaluated in closed form. But when
n # 0, the above integrals can be expressed partly in closed form, partly in

series, or they may be calculated numerically also.
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Expressions for Total Fields (for loss-less media

Now substituting the expressions (64) to (69) and (71), in the equations
(22) and (23), the complete fields due to the magnetic current ring source can be

expressed in the following way (suppressing the time dependence factor ej“):

.;jx z + jnd
c m n®
E = -— El J("z r) M J (ﬂl r)]
z ( [ in n '*in in
i,n ”3 "hm);_‘; Finfinl
(75a)
[ o€ €ss, C . M £,.6 m‘”} | rogrga
71 c"in
+jX z + jnf
Ez ) g’inJ (r).
in.l. lnL
(75b)
® %
jwe €28, C, (o) nl £ (c)
.[__..Q__E_ZMIL_ + _._Ai_’.ln.__] , for ag l“b
"in c,,in
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~ _T_j Z + jno
£ - jwe Cu.€ ag z :mnafme %

r sre? e
e by Lo Ty tagnMagy="yy ing ind
y 131
% %
.[ Jw eoczgzmcin(c) . n"n §31néin(c) :],
* *
Min c/‘lizn

J R 12 J( ' )
.[:{‘z T T o et T i B ’Irlmr }

m

' 0, ! ‘2 Jn“;mr)
* §2m{'l,. Tyn€aln Moy ®) + Bk € BTy, —r——-—} for O¢r¢a.

(76a)

Tl z + jn6 £ % d &
e % o [jw ¢ €&, C, (o) . oA £, G (o) .
. yoe - melImL ‘Tn T
2=
[ w“o“:game(r) i j gzmcm(r)] for agrgb
’lm : nm ’ w N

(76D)
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~ ;jdmzﬂne {jweoezgmncin(c) nlngtiinGin(c
me — 4 ;;,——
L €150 ° “in M Xin
~4x 2 3 ? ‘ 3 13 F I
€ b i,n 14n *3jn ”ﬁn ,hin ind ing
3
J (O, 1)
n ‘‘in
.[{ncsz r “wHpEL m‘!’i J (?‘inr)}
( 1
1 J ?2 r)
12 LI n "‘in
+ Elin{w“ oPr hin Vﬁan( Nin rHn T B }] , for 0{rga
(77a)
-~ ;jdmz-i-jne x
o Z & o WEEE, C, ()  nX ESmci (c):|
4y q + *2
Lo i Fintnt in °'l1n
L=1
.[“xinfzinJiér) _ Junaty Sinln) ]
, for adrgb
?in r 'lin b
(T™)
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¥ jdinz +jné

H =1 jcw‘:oeza'3 mne xin .
Z 4x “rer ("I' _?'3 ) F
i,n ‘Byn (4 3 ind'ind

jwceg C, (c) nifg 6(0) ' '
.[ 02 21n in in ii%l in ]. [glmJn(Q,mr)-Jn(*Ilmr):] for 0 ra

Qin c,lin
(78a)
;jdeinzﬂne
H = §-2 Z “n° Joe ‘2521,,0 (c)+nxln§3ln e 6 o
BT 3in"in
z 4r f F .
i,n inII ind ?ln ?ln
Ls1
for a{rgb (78b)
demz +jnb
H oo - cwtoczzm e j"’“‘gzmc (c) .
r 22 12 13
ek, 'qlln zln n~ ‘hln)zFlnlI 'lln

251

2 3
n¥ Esmai (o) n M ¢ H (“inr)
11n i" H a3":::("%")‘t""in ]

c'tin ninzz r
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o ] 13 zzJ("lzi)
- glin{}‘ in I‘ina(inez“zaan(‘z’inr)'.'mlIinsi nérhr ’ for 0r¢a

(79a)
H z+ino
~ in x % *
H = -<& my° €L Cinl®) . 'n*lng31néin(c) X
Tr 4r F I * CT
ind ind .Qin K in
=1
g, o () ja(s S, (r)
x[ 22m in in *3in"in ] for agrgb
inr Nin
('79b)
¥ z+jn6
jowe € He I8 jwe C,’E & (c)
H = - 0z n 2in in
) /73 I % a3 12 & F o
dre p, I,n ‘lin’l’in("’in- min)Z inl'inf Y'lin
L=1
n, g é

(c) 3 2 2 Jd ('71 r)
in 31!1 in L in
c;,r ]H Hlynla, My (q‘inr) n'Rin’einez}" %3 }
in

2 22 €4, '
'glm{er"rqlinn’in in "’31 r)+nT a( ) a3Jn(?,inr)}:, for 0&rga

(80a)
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T—jl z+jno

av

. -—Z [jwe € )§sz1 (c) n{ngsme(c)] y
? Finlling

T 0‘7

-jwe €48,, C, (r) n¥ E. G, (r)
X[ 0 3°2in “in ’{nSmin] for 04 T4 b.
nin ﬂir

n

(80b)

Wherever the sign + or + appears, the upper sign corresponds to the propaegation

in the positive z-direction and the lower sign for the negative z-direction

Expression for Average Power-Flow Due to a Magnetic Current Ring Source

The average power flow is defined as

*
P =lReSSExH-zdS
av 2 § = = (i)

(81)
1 *
= == Re S§ E-Hxz dS
2 = =73
where Re means real part of
E = total electric field due to the source at any point
‘[_-I_ =

total magnetic field due to the source at any point

Now using equations (18), (21), (22) and (23) in (81), the expression for
Pav can be written in the following manner
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P R{le——m"r () ] (82)

Finllind

n)(inESIn jwefaSyy

2
2
m G, (c)- C (c)l
- Ec;'a R{Zl . T 10 T 1= ]
3z
In ; Finllinl—

(83)

In particular when n = 0, i.e., when the ring source is of constant
amplitude, the expression for the power flow reduces to the following form:

2
we €3 31 C,©

R{Zl ] w
iof—lio[«

Is.t

e~
!

It may be noted that for non-dissipative media the quantity inside the
square bracket is real. Any individual term in the series in (82) or (83)
represents average power flow corresponding to that particular mode in (or i

when n = 0).
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1}
WAVE PROPAGATION IN AN ANISOTROPIC PLASMA:
SLOW SURFACE WAVES
Introduction

In this chapter the general results of the previous chapter will be applied
to the study of propagation of electromagnetic waves in an infinitely long aniso-
tropic plasma column enclosed by a dielectric cylinder, which is also enclosed by
a perfectly conducting metallic cylindrical waveguide; i.e. the geometry and the
source of excitation are the same as those of the general probelm except that in
the present situation the anisotropic medium is represented by a plasma column
with a uniform static magnetic field in the axial direction z. The relative permea-
bility u , of the dielectric medium which encloses the plasma column is assumed
to be unity.

The plasma is considered to be fully ionized (i. e. macroscopically neutral)
and there is no drift velocity (d. ~ ) of electrons or of ions, i.e. the plasma is also
stationary. If one also assumes ..at the illuminating electromagnetic waves are
weak, then it is possible to describe a plasma as a dielectric medium. In this
analysis it will be assumed that the plasma is homogeneous, i.e. its density (and

hence dielectric constant) is not a function of space.
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In the presence of a static magnetic field, the dielectric constant of the

plasma becomes a tensor, which means it is an anigotropic medium.

If the static

magnetic field is applied in the axial direction, it can be shown [é] [3][5& that the

plasma has the following dielectric tensor

err jere 0
€ -
~-) j'Eer €00 0
0 0 €
zZ
where
Ly iy
a (1= )
€ € =€, =1+
rr 66 r .
R
w
w w2
€ = € = € = . p T
ré or W wz - (-2
w2
and € =€ =1- P
z
= Ja-L

v = collision frequency (radian)
W = =,

qq * charge of an electron

= cyclotron frequency (radian)

m, = mass of an electron,
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B, = d.c. magnetic induction (3e)
gzﬁ N, 1/2
w_= = electron-plasma frequency (radian)  (3f)
P \% Mg
Ne = electron density (3g)
€ * free-space dielectric constant (3h)

In the above analysis the motion of an ion due to a disturbance is neglected
in comparison to that of an electron. The relative permeability of the plasma is
assumed to be unity.

It can be shown from the relations in (2) that the components of € satisfy
the following relation

e = (1-€)(e, - €) (4)

An interesting conclusion can be made from the relation (4), namely €' = 0, for

either €, =€.0r€, = 1. The physical interpretation of these results can be given

r
in the following way. For isotropic plasma (i.e. when B, = 0), €, = €. and €' =0,
On the other hand when B, + (i. e. W, = ), € = 1 and €' = 0. The above
statements can also be verified directly from (2). R may be noted here that the
collision term v in the expression for € in (2), represents loss in the plasma.
Although the various dispersion relations developed in Chapter I and in Appendix

C are valid for a lossy plasma, the complete field expressions obtained in the

previous chapter are not. On the other hand if it is desirable to find the expres-

sions for a dissipative medium (i. e. plasma), one must use the appropriate
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'
orthdgonality condition and the resulting Green's functions which have been dis-
cussed in Chapter I as well as in Appendix B. But here only the loss-free (v = 0)
plasma will be considered.

Although the results obtained in the previous chapter are valid for all
possible modes of propagation in the structure, in the present chapter attention
will be directed to the analysis connected with slow surface waves. The slow
surface waves are those waves which decay radially in the dielectric region and

propagate along the interface of the plasma column and the dielectric, in other

.4
k /&

electric constant of the medium surrounding the plasma column, This medium

words for such slow waves one finds > 1, where €; is the relative di-

may represent a glass tube. Various passbands for slow-wave propagation will

be obtained in the following investigation. Some of the passbands depend on the

> 1, and some passbands do not depend on

o®
ke

.4
ange of the values of the rati
range of the values of the r Okfi?

the particular values of this ratio, provided

> 1, the condition for the
existence of slow surface waves.

Finally numerical computation will be made for a special case.

Conditions for Slow-Wave Propagation and Determination of Various Passbands

In the following analysis only the expressions for the radial wave numbers,
n{ and n; , will be considered. These quantities do not depend explicitly on any

particular boundary, except that the geometry is cylindrical and uniform in the
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z-direction, thus the results will be true for any such structure, closed or open,
which can support slow waves. For a particular structure, one must consider
the solutions of the respective dispersion relation together with the following
analysis. Since the solution of any dispersion relation, determines only a particu-
lar set of values of n and n; , the limitation imposed on the values of nl' and n;,
which are obtained from the expressions for n 2 and n;’ (valid for unbounded
medium also) is furthermore narrowed. Therefore the requirements which are
obtained from a study of the expressions for n{ 2 and n'z2 alone, are nothing but
necessary conditions of wave propagation. The sufficient conditions for propaga-
tion of waves are provided only hy the simultaneous solutions of the respective
dispersion relation and the expressions for n;’ and n2.

The expressions for radial propagation wave numbers n{ and 1, can be

written here in the following way

2

n;; =v+ v -u . (5a)
k(1 -y){(Bz-l)(l—x) +y} k2 xy(Bz—l)
x+y-1 2Ax+y - 1)
- (5b)
2
2 J(Bz -1) 2+ 432!!(1 -y)
tky -
2Ax+y ~1)
where J
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2
2
T — -1 -2(x+y=~-1)p +2y(1 - 6
T Sty -1) [(B o -2ty 0+ 2 y):] o)
k4(1‘Y) 2 .2 ) 2
U= - —— [(B -1) (1-x)+2y(8 -1)+.VJ (6b)
xty-~-1
2
)
x=-&- (7a)
2
v w
€z=1-y (7c)
x+y-~-1
S —— 7d
€ — (7d)
€ = yrx_ (73)
x-1
- 26 7
B . (7£)

In the above definitions of € €

and €', the collision frequency v is
neglected.
It can also be shown that

2
2
k
v2-u= [——y——] °[(32- 1)? x2+432x(1-y)] @)

2(x+y ~-1)

In the dielectric region
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n2=k2€z-a€2 (9)

since g = 1,

2
Therefore for slow surface waves, n < 0, and

s2 2
S
k & k' 5
i.e. 2
£,
k™ g
2 2
or -éé-=8 > & (10)
k
where n=-j§ , §>0.

It will also be assumed that € > 1.

Since it is assumed that both plasma and dielectric are non-dissipative, the
propagation wave number € is always real. Although the expressions for n'lz and
n': show that these radial wave numbers may be complex, on physical grounds
only the real values of n;’ and rg’ will be allowed. For example* if complex
values of rq’ and n;’ (which are complex conjugates of one another) are allowed,

this means that there exist growing waves showing instability of the plasma in the

* The primary reason for allowing only the real values of n'® and 7'? in a non-
dissipative medium, is that the power flow, the characteristic impedance, etc.
must be real for such a medium.
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radial direction. Therefore this apparent inconsistant situation will be avoided
by allowing only the real values of nl'2 and n;’ in the following analysis.

The following three cases specify the conditions for which n;’ and 77;’ are

real.
Case 1
\
u<o in this case
\ n;’ > 0 and (11a)
N2 <0,
J 2
Case I u>0 1 in this case
v >0, , N2> 0, and (11b)
and vZ-u> 0 n2 > 0,
7
Case Il u> 0, in this case
v<O, . N2 <0, and
and v2-u>0 n3 <0, : (11c)

The regions of u and v in the above three cases are shown in Figure 2.
nl" and n;’ become equal on the parabola v2 = u and both of them assume complex
values ingide parabola, which contains the positive axis of u. Therefore this is
the forbidden zone for u and v. When y <1 (i.e. when wp <w), it is easy to show
from (5) that 73 and rz;’ are both real. So even if one considers instability in

plasma, this does not occur for wp < w, provided the medium is loss-free.
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In the following detailed analysis the possibility of the above three
individual cases, i.e. the conditions under which the parameters x, y, B, etc.
have to be chosen, will be shown. These conditions on the parameters, which
are necessary, will give the maximum passbands of slow wave propagation.
Before starting the actual analysis, it will be convenient to introduce ¢ = Bz -1
in the equations (6a), (6b) and (8) which can be rewritten in the following manner

(for slow wave Bz> € > 1)

2
k“(L-y)
- — [wz(l-x)+2w+y2} (12a)
x+y-~1
k2
V& —— [w {xy-2(x+y-1)} +2y(1—y)] (12b)
2Ax+y-1)
2 2
k
vz-u= [ ! ] : [w2x2+4(¢/+1)x(1-y)] (12¢)
2Azx+y-1)
2
y+1=8 > ¢ (13)
Case 1
u<o

}] 3
n1 >0, nz <0

This situation can be satisfied in the following three ways.
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1-x>0

1-y>0 ~ (14a)

1>x+y-1> OJ

1-x<0
1-y<0 (14b)

U> —X—(1+ %)

x-1

1-x<0
1-y>0 (14c)

U< —2— (1+ {%)

x-1

Although the condition in (14a) does not explicitly depend on ¢, for slow wave ¥
must satisfy the condition (13). On the other hand the conditions in (14b) and (14c)
show that besides the restriction imposed on x and y, ¢ must satisfy two simul-
taneous conditions. More precisely, the inequalitites in (14b) suggest that ¢ must
be greater than a certain value, i.e. the wave propagation which satisfies (14b) is
possible for a value of ¢ above a certain value. In other words this passband of
wave propagation depends on the degree of slowness of the waves. On the other

hand, the condition in (14c) can be met only for a definite range of ¥, namely

y
x-1

g -1<y< 1+ x)
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where 1 ~x<0, and1 -y > 0.
Before investigating Case II and Case III, it is desirable to find conditions
under which u > 0, v2 ~u> 0, v> 0, and v2 < 0, respectively.
For u > 0, one finds the following possibilities
l-y<0
(15a)
1-x>0
l-y<0
1-x<0 (15b)

v < L= 1+ %)

X

l-y>0

l1-x<0 (15¢c)

v> =X— 1+ {X)

x-1
l1-x>0
1-y>0 (15d)

x+y=-1<0

For !2 - u> 0, the following conditions must be satisfied

l1-y>0 (16a)
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(here one may choose either x + y-1 > 0, or x+y-1 £ 0)

1-y<O0
(16b)
y oy -1 x'l +;2( Jiy - Dix+y-1)
The following three situations satisfy V > O:
Xx+y-15>0 ]
1-y> 0
¢
xy{ 2(x+y-1)
2y(1 - y)
\IJ 42(x+y-1)-xy J
(17a)
x+y~-1>0
1-y>0
xy > 2lx+y-1)
- (17b)
1-y£0
xy>2x+y-1) ¢
5 2y(y - 1)
\’P xy-2(x+y-1)
- (17¢)

62




THE UNIVERSITY OF MICHIGAN
4386-1-T

Finally one obtains the following four possibilities for V £ 0:

1-y<0

(18a)
2(x+y-1)>xy
1-y <0

xy>2x+y-1) , (18b)

2y(1 - y)
v < Xy - 2(x+y-1) J

x+y-1>0 ‘1
l1-y>0 (18¢c)
2(x+y-1) > xy 4
2y(1 - y)
2(x+y-1)-xy

o

v >

x+y-10
(18d)
1-y>0
To satisfy the requirements for Case II and Case III, it is necessary to

satisfy inequalities (11b) and (11c) respectively. It can be shown by a little analysis

that the following are the conditions by which Case II and Case III can be realized.
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Case II

This situation can be obtained if the following conditions are met:

1-y¢0

1-x«0
- (19)
2x +y - 1)+x{xy-2(x+y-1)} > xy VX +2x+y-1)

)xy+2(x-1)'\f®-1)(x+y-l) J

The inequalities in (19) are obtained from (15b), (16b) and (17¢c). There is

no other possibility which can satisfy Case II.

Case III
In this case one can show that there are only four possible conditions as

follows:
1-y >0

1-x¢0 (20a)

v> 5 a+ V)

Note that this condition is the same as (15¢c), which also satisfies conditions (16a)

and (18c) automatically.
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1-x>0
1-y>0 (20b)

x+y-1¢0

The condition (20b) is the same as (15d) which also satisfies conditions (16a)

and (18d). -
1-y<0

1-x>0 > (20c)
«//>ﬁ”—;—1—z +2 fy-Dx+y-n

This condition (20c) is obtained by combining the conditions (15a), (16b) and
(18a). It may be noted that condition (15a) automatically satisfies (18a) also.

The fourth possibility of realizing Case IIl is obtained by combining the
conditions (15b), (16b) and (18b). Since it is not obvious that these three conditions
can be satisfied simultaneously, it is necessary that they must meet the following

requirements (a detailed analysis is omitted for the sake of brevity).

=

1-y<o0
1-x<0

xyD2x+y-1) > (20d)

2x+y-D+xyVxd>xy+2x-1) iy - x+y-1)

)2(x+y-1)+x{xy-2(x+y—1)}
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Thus it is found that when the condition (10) and any of the following condi-
tions (14), (19) and (29) are satisfied simultaneously, one obtains maximum pass-
band of slow wave propagation. These conditions are necessary for slow waves.

Study of Dispersion Relation for Slow Wave Propagation Under Various Special
Situations

Although the various results together with dispersion relations obtained in

the preceding chapter are valid for any arbitrary angular variation of the magnetic
current ring source, in this section only those dispersion relations which are inde-
pendent of angular variation (i.e., n = 0, for constant amplitude of the ring source)
will be considered.

Since the solution of the dispersion relation, appropriate for any particular
case, together with the expressions in (5) for n',? and n';? gives exact information
of the propagation of waves, and as this solution cannot be obtained analytically in
general, the information obtained here without actual solutions will give only nec-
essary conditions for slow wave propagation. In general, the actual solution can be
obtained only by numerical computation.

+S!:atic limit: This static limit is a good approximation in the following

situations:

1) circumference of the plasma column is much shorter than the wavelength
of the operating frequency

+
Trivel piece in his work [8] discusses this problem in detail and his method of
solving this problem is different. Here his results are obtained asa limiting case.
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2
2) for extremely slow wave, i.e., I%Se—; > 1,

This dispersion relation in this case for n = 0, can be obtained from the

relation (3) of Appendix C, and it reduces to the following form:

et dilnya) Il(xa)xovfb)ﬂodb)xl()(’a)
€ J (nha) 1 GMIK Pta) - T (€a)K (o)

(21)

where
13 - 2
Ny = (Ez/ Er) R
(22)
oz -3
The above relations show that the dispersion relation and hence fields do not
depend on n'; in this limit. Moreover, in this limit the magnetic current ring
source excites only E-type mode. But in a general anisotropic medium character-
ized by € of the form shown in (1), pure E-type and H-type modes do not exist,
i.e., they are coupled to each other.
From the properties of modified Bessel's functions it can be shown that the

right-hand side of (21) is positive and greater than unity (it approaches unity as

®—r o). If ez/er < 0, n'; is real, a solution of (21) is possible.

Since Ez/er . {1-9x-1) <0

- x+y-1

either
x>1
(23a)
y>1
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or

x1
y<l1 (23b)

14 x+y<2

If ez/er > 0, 42 ¢ 0, and n', is purely imaginary, the dispersion relation (21)

becomes

. e /e . L ¥a /ez/el) ] hWa)KOWbHIo“b)Kfla)
T el Wa feTe) 10K Ofa)-1 6la)K ¥b)

>1 (24)

A solution of (24) is possible if €.<0, ¢ 0 (since €; » 0). As it is also known

that I,(z) < Io(z), for any z > 0, it is necessary that

- €, : Jez/er > €
_xil_-_]_'_ . .(.];M > € (25)
l1-x v x+y-1 3

In particular if €; = 1 (i.e., when the plasma column is surrounded by air), the

or

inequality (25) reduces to the following

Gty D=1 (26)

l-x

Finally the inequality (26) can be shown to be equivalent to the following two

passbands for slow waves when the dielectric surrounding the plasma column is air:
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y-150]
1-x>0‘ (27a)

x+y>2‘

y-1<0-

1-x<£0 7 (27b)

x+y(24

It may be noted here also that when the plasma column is surrounded by a
dielectric €3 > 1, the passbands are reduced further.

When b = &, i.e., when the plasma completely fills the waveguide, it can
be shown that the corresponding dispersion relation (in the static limit) reduces to
the following

Jo(n'l a) = 0 (28)

It is easy to show that only real values of n', can satisfy the above equation
(28). Therefore, in this case also it is necessary that ez/ €. <0.

A study of the relations (21) and (22) reveals that for x =1, y =1 or
x +y =1, the dispersion relation (21) does not possess any solution, which is
equivalent to saying that these points represent cut-off for the slow wave propaga-
tion.

It may be remarked here that the passbands for slow wave propagation when

the plasma completely fills the waveguide, give maximum range for the case when
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the plasma column partially fills the waveguide (provided n'; is real) in the static
limit. These maximum passbands are depicted in the following Figures 3 and 4,

subject to the conditions (23a) and (23b).

w’+w - wiw?

+
t[-ele, - ! ’)(w o9 (29)

Since group velocity is defined as dw/d¥, Figures 3 and 4 show that this
value can also assume negative values — which proves the existence of backward
wave in such a structure.

With a few more remarks, the discussion of the static limit case will be
concluded. The static limit results are reasonably valid for extremely slow wave
propagation, as pointed out in the beginning of this section. In this limit n'; does
not appear in the dispersion relation, showing that the field components for
extremely slow wave propagation do not depend on n';, when the source of excita-
tion is a magnetic ring current. In other words in this limit an H-type mode is
not excited. This does not mean, however, that in this limit V]; =0. In fact,

Y); =- j &, alarge imaginary number, which shows that a wave dependent on q;
decays away very rapidly. So it may be conceived that in this limiting condition
the H-type mode is very weakly coupled with the E-type mode and the components

representing H-type mode are also very highly attenuated. It may be noted here

*In [8] , Trivelpiece has also obtained similar results.
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also that the results for 8%/e; >) 1, essentially correspond to those for static limit,

General Dispersion Relation (when n = 0) for Slow Wave Propagation

It can be shown from equation (56I) of Chapter I, that for slow waves (when

n=-j6, 8 > 0), the dispersion relation becomes

Gz(n'zz - n'lz)Jo(a)ao(a)JI(n'la)Jl(n'ga) N E,(‘n'zz- n'13)6°(a)§ (a)Jo(n'la)Jo(n'ga)

n'y n's (B* - Ez)
=J_(n'3a)d;(n';a) =
o - -
k) JF — [e, MCo(a)Go(a) - €8 }o(a)so(a)]
J (n';a)d;(n',a)
[¢] - - -
Y e (988,@8,@- e MZ @5 @] - o
(30)
where
P =-6% = 18- N2 (31a) .
Ak = B (31b)
M = Ke /e Ne - B - 0 (31c)
e (31d)
S = ez (er_Bz) _n.lz
r
(@) = I(5bK (§a)- 1(5a)K (8b) (31e)
Gola) = LS bIK (§a) +1 (Sa)K (Sb) (316
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S?Z) = L(§ bK 1(6 a) - (S a)K (S b) (31g)
C &) = WK (Eb)+1 (8 DIK{S a) (31h)

In connection with the solution of the dispersion relation (30), appropriate
for slow waves, no general discussion can be made. Only a numerical solution
subject to the expressions for n',? and n',’ given in (5), can give the actual
nature of slow wave propagation. |

The dispersion relation (30) will be solved subsequently for a special case

stated in (14a), for which u { 0, n'; is real and n'y is imaginary.

For Zero Magnetic Field (with n = 0)
It has been shown in Appendix C that in this special case the dispersion

relation 1as the following particular form (for surface waves)

-4 ele(n'la) L(S§a)K(6b)+1 (S b)KI(J a) +
- () (Y (32)
n'y €39 o(n'la) 10(6 b)K o( Sa)- Io( é a)K é b
where
nllz = k’ez _x’ = - p’ (33&)
P =1Bg-RN = &2 (33b)

*'This result agrees with that obtained in [7]
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In this case of isotropic plasma only an E-type mode is excited, due to the
type of the source of excitation chosen. Since €, is always less than1 and €; 3 1,
it can be shown from (33a) and (33b) that when 7 is imaginary, n'; is also imag-
inary. In this circumstance a surface wave is possible if ¢ «< 0, moreover, since
the left hand side of (32) is greater than unity, g/d" < 1, and i:::;
also necessary that lez |/ez >1, ie., w (j'l-,,jhe': .

< 1, itis

For Infinite D.C. Magnetic Field in the z-Direction

In this case the dispersion relation for slow waves has the same form as
(32), with n",? = ezn’ = -ezé 2 It can be shown, [_7] , that slow wave is possible
if €, { 0, which makes n', real. For zero or infinite d.c. magnetic field in the
axial direction, an elaborate investigation has been made in [7] .

Propagation of Slow Waves in an Infinitely Long Column of Plasma Embedded in an
Unbounded Medium, with an Axial Uniform Static Magnetic Field

To investigate all related results ar ' the nature of slow wave propagation,
in this case, it is only necessary to let b =4 w in the corresponding results of
the waveguide problem, with r# = -§3 = k®¢,-a02. In this case the dispersion rela-
tion takes the following form which is equivalent to equation (22b) of Appendix C

= E 3 L =
(with Ho=p =1, u =0, 1 1)
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e, a6  K{(§a)
Mins I (mhal ) T 5T KE(Sa)

€s K1(8 a) 8 Jl(n'la) Jl(‘n'za)
na A K (8w "E T e T T e
€, Kl(S a) [ Ji(n'qa) Ji(n'ya)

¥ n'.0's § (n'2-n'd) KO(S a) _r“s J (n'za) - M J (n'1a) B aa*

The following identities are found useful

e - ez)(sn',’ +MnyY) = ee (2 +a) (e, +o0) (35a)

and

e: a- ezxsn',’ - Mn4,?) = €€ (8- M [(k‘er -Ada +e) - k’e"] (35b)

To derive relation (34) it also has been assumed that aa—e 8 0, which may be
interpreted as following from taking the excitation to be a constant ma gnetic
current ring source.

When the d.c. magnetic field is either zero or infinity, only the E-type
mode is excited due to the type of source chosen here. In this particular case the

dispersion relation takes the following form

+
This result agrees with the corresponding result in [4] , when the identities
(35a) and (35b) are used (with €3 = 1). It should be noted, however, that to obtain
radiated fields in this configuration the present limiting process is not valid.
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S€_Ji(n'a) K,(§a)
. — (36)
n'1€zJ°(ﬂ'18) K o( §a)

If the axial static magnetic field is zero, €. =€, and n',? = k’ez- A3, the

condition of slow wave is exactly the same as stated in connection with the similar

situation in the metallic wave guide, namely, €, < 0, and |ez| Jea D1,

On the other hand, if the magnetic field is infinity, a slow wave is possible
if € <0 and n'\®=€_ &%
z z

Static limit: It can be shown that in the static limit with b = 00, the dis-

persion relation (21) reduces to the following expression

€rﬂ'1 o (n'la) l{l (Jfa)

@® T mha) KOl 37
where
ez
n? = - re i3
r
s§=
(38)

If ez/ €.< 0, then n'; is real and a solution to (37) is possible for a slow
wave,

If ez/er> 0, then n'; is imaginary, i.e., n'y = -jp, where p > 0. In this

case (37) transforms to the following form
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€_pl (ap) K, (a)
e (ap) : K (oa)

(39)
Kl(i(a) Li(ap)
Since m > 1 and Tap) e( 1, it is necessary in order for (39) to
have any solution that €. < 0 and also —e_L > 1. It has already been stated
2
above that ez/ €. >0, therefore, €, < 0and €. <0.
If one writes €. " xty-1 » €, = 1-y, as defined in (7), then the conditions

x-1

€ |p
€, <0, €. < 0 and |_r|_ > 1, become equivalent to
€3

l-x

y-1>0 e

1-x>0

’ (40)

Note: The discussion on page 497 of [4] of the situation where u = 0, i.e.,

n's = 0 seems to be inconsistent. The first reason is that when n'g = 0, it can be
shown from the general expressims for 1;3t and l_{t appearing in Chapter I, as well
as in Appendix A, that electromagnetic waves which can exist under such a situation
are TEM only. In this statement it is also assumed that the diagonal components
of £ are finite and non-zero. But a TEM wave cannot exist in a structure con-

sidered by the authors of [4] . A similar inconsistency appears on pp 183 - 185

of [6] » discussed by Agdur.
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Secondly, the authors of [4] consider a case when y - @ (and n'; = 0),
and simplify the dispersion relation to an expression containing a logarithmic term,
although the modified Bessel's functions Kl(z) and Ko(z) do not behave as logarithmioL
functions for large arguments.

Any other interesting situation can be studied by considering the corres-

ponding dispersion relation given in Appendix C.

Expressions for Ez Which is Independent of Angular Variation (i.e., n = 0)

Since Ez plays an important role in a plasma, its expression will be given
here for n = 0, IEzl will also be calculated numerically as a function of r for a

special case of slow wave.

¥ jJ( z
cm e 5210 io(c) '
E, = -Juee o E = > SigliJ (n'y,r) - MJ_(n'1r)
for 0{r ¢a (41)
e - S nJ (ny,8) - M,J (n},2) (420)
2 -n?) b (a) :
(g = 13y 16
ez
- — . - 2 - 12
8, = .. (k’er X ) -0y (42b)
Ez 2 2
Mi 3 e—r . (k’er - i) - n'21 (42¢)
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(42h)
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(42j)
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3
. erMili - J(iez(kzer -J(i)

i €
z

j«mm = J_(nbIN_(nr) - J (nrIN_(nb)

Sio(a) = Jl(nib)Nl(nia) - J,(nia)Nl(nib)

Gio(a) Jl (nlb)No(nia) - Jo(nia)Nl (nib)

C,o(©) = J(n,IN_(nb) - I (nbINy(n,c)

=t
0

*
= 1 4
11 Jl(nur) Jl(nllr) rdr

%*
Jl (niir)Jl (n'zir) rdr

*
t 1]
3 Jl(nzir)Jl (nnr) rdr

14

*
5 J; (nir)Jl (nir) rdr

%
16 4 (nir)Nl (nir) rdr

L, = § 3y(n, )9 (nt, ) rdr
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)

*
_ S J1(nir)N1(nir) rdr

%
118 = S N1(nir)Nl(nir) rdr
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1

PROPAGATION OF SLOW WAVES IN AN ANJSOTROPIC FERRITE

In this chapter the general problcm solved in Chapter I will be applied to
the study of wave propagation in an infinitely long anisotropic ferrite column
enclosed in a dielectric medium, which is again enclosed by a perfectly conducting
metallic cylindrical waveguide. All other conditions are similar to those described
in the previous chapters. In a ferrite medium with an axial static magnetic field,

anisotropy is exhibited by the following dyadic form [2:] of u

By j#re 0
B 'j“er Hog 0 (1)
0 0 Heg
_ _ _ _ _gP
where M Hog = Mo 1 1o (2a)
P
= g! = o e———
Brg = Hor o 1-o (2b)
g, =1 (2¢)
Mo
P = ]7 ](I— (3a)
o
Ho
v =
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Mo = d.c. magnetization
Ho = d.c. magnetic intensity
Y = gyromagnetic ratio for electron

It can be shown from (2) that M. and u' are related by the following relation

u_-1 = ou' (4)

It will be assumed that the relative dielectric constant of the ferrite is ¢,
a scalar quantity and the medium surrounding the ferrite has relative dielectric
constant €, and relative permeability 1.

With the above assumptions, the magnetic fields, dispersion relations etc.
for this problem under any limiting conditions can be easily derived from the cor-
responding results given in Chapter I and Appendix C. Therefore, no detailed dis-
cussion will be given in this chapter.

It may be noted here that when a ferrite column or a plasma column is
situated in an unbounded dielectric medium, the boundary conditions for E and H
in both cases are identical, consequently any general expression for one situation
can be derived from the other, using the duality, provided B, is not replaced by

unity in any general expression.

83




THE UNIVERSITY OF MICHIGAN
4386-1-T

Expressions for Transverse Wave Numbers

(35) of Chapter I, one obtains the following expressions

"1'::, - vifviou

Kewd -uh) -p o w
= m - 2“r {k’CI(o”r""')'£0}

r

u' 3 1/2
12—‘: {k’t‘;(anr-u')-d’a} + 4k3%¢,

ey @ul-u? +u ) - 22 +1)

2 “r

VvV =

2
U = ‘% [(lée,ur-x’) -k4€¥u"]
r

For slow surface waves the following condition should be satisfied

84

If the values for u and € given above are substituted in equations (34) and

(5al+

(5b)

(6a)

(6b)

)]

] 1)
+ For ferrite problem the relation N = 13 cannot be satisfied, since vi-u)yo.
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12 13
Since H, = 1, equations (5) show that V2- U ) 0 and 71 and 73 are real
for real M €, and €,. Therefore, no instability phenomena appears in the case
* ! t
of a ferrite column. It may be noted that ), and v); may assume purely imaginary

values as follows:

Case 1 1 > 0
. } if U0, V>0, or VKO (8a)
1, <0
3 .
Case II 1, >0
} ifU>0, and V)0 (8b)
2
7, >0
]
Case III ",1 <0
} if UXO0, and V(O (8c)
12
1, <0

The above information and the general results given in Chapter I and
Appendix C are sufficient to obtain any particular result for a ferrite column.

It may be noted that an electric current dipole source is more appropriate
for a ferrite problem than a magnetic current ring source. The field expressions
for an electric dipole source can be obtained easily by using the appropriate dyadic

Green's functions developed in Appendix B.
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IV CONCLUSIONS

In conclusion it may be mentioned that the work described here gives a
systematic rigorous approach of solving a source problem (not necessarily a ring
source) involving a homogeneous anisotropic cylindrical structure bounded by con-
ductors, Since the source free solutions are capable of representing all possible
modes for the structure of the problem, total fields due to any arbitrary source of
any kind (namely electric or magnetic current source) can be calculated by using
the appropriate dyadic Green's function. If there is more than one source, the total
fields can be obtained by using the superposition theorem, provided there are no
interactions among the individual sources. As the present analysis considers a
magnetic current ring source of arbitrary angular variation, the results can be used
for any given angular variation of the source.

From the general dispersion relation which is an eigenvalue equation and
independent of source, various interesting special cases, some of which are
already known, have been studied. The limiting proce ‘es used in obtaining the
dispersion relations for these special cases can also be used to obtain the expres-
sions for the fields in the corresponding situations.

The analysis for the plasma problem which is a special case of a general
anisotropic medium characterized by dyadics £ and y, emphasizes the slow wave

propagation. Here the necessary conditions for slow wave propagation, including
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a number of special cases, have been obtained from the expressions for the trans-
verse wave numbers. These necessary conditions also give maximum passbands.
The sufficient conditions and hence the actual passbands can be obtained from the
solution of the dispersion relation. For slow wave propagation, some passbands
depend on the degree of slowness of the waves. The degree of slowness of the
waves depends on the relative dielectric constant, € 5, of the medium surrounding
the plasma column, when all other parameters are kept constant. It has been
shown that the higher the value of € ;, the slower the phase velocity of the wave.
In other words, for a given €5 there is a minimum phase velocity for which a cor-
responding slow-surface wave can propagate. Most of the energy of the slow waves
considered here is confined into the anisotropic plasma. In general, the lower the
phase velocity of the surface wave, the lower the amplitude. Not all the various
passbands for slow wave propagation in an anisotropic plasma column, mentioned
above, are known in the literature, at least to the best knowledge of the author.
Although these passbands could be obtained without any consideration of the pres-
ence of a source.

In the case of an unbounded homogeneous anisotropic medium where a TEM
wave can propagate, conditions of TEM wave propagation in the direction parallel
to or perpendicular to the static magnetic field are obtained from the general ex-

pressions of the transverse wave numbers. It is also shown that the condition of
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TEM wave propagation in the direction of the static magnetic field is equivalent to
the vanishing condition of the product of the transverse wave numbers. This also
establishes the fact that the consideration of the situation under which the product
of the transverse wave numbers vanishes is not justified in connection with the
wave propagation in a bounded medium which cannot support TEM waves. In other
words, if a bounded isotropic medium cannot support TEM waves, so also is the
case for a bounded anisotropic medium. For not being able to recognize the fact
that the condition of TEM wave propagation in the direction of the static magnetic
field, 18 equivalent to the zero-value of the product of the two transverse wave
numbers, some authors+ discussed the possibility of wave propagations in a
bounded anisotropic plasma column, under the situation for which the product of

the two transverse wave numbers vanishes,

+ Agdur, pages 183-185 of Ref. [GJ and the authors of Ref. [4] , page 497,
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APPENDIX A

MAXWELL'S EQUATIONS FOR ANISOTROPIC MEDIUM

The medium to be described here is characterized by a relative dielectric

(permittivity) tensor € and a relative permeability tensor u having the following
~s

particular form

€11 1€, O

£ €2 € 0 ®
0 0 €33 f, €11"
k11 0

3 N R P Hog 0 (2)
0 0 Haz |l Hi117Ha

The above representations show, in both cases, that the transverse com-
ponents and longitudinal components of the tensors are uncoupled, where € 33 and
Has correspond to the longitudinal, a preferred direction (say z-direction) compo-~
nents of the tensors Q and u respectively. Therefore, € and K can be written
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in the following manner also
£- ‘gtt t2,2, c33 @)
R “@

where € t and "tt are tensors (transverse to z-direction) and '!o is a unit vector
in the z-direction.

The Maxwell's equations for anisotropic media with sources have the follow-

ing form (the time dependence being ejwt).

¥ x E@@) = - Jup g " H@) -1 (r) (5)
Vx HE - jwe 6@ ' E(@ +1 (") (6)
V- W) H@ =0, forr Rt
V' e "E(@ =0, forr f# " (8)

where,

r = observation position vector (3-dimensional)
lm(g') = magnetic current sourceat r = r'

le(g") = electric current source at r = r"

90




THE UNIVERSITY OF MICHIGAN
4386-1-T

In the following discussion the transverse vector and transverse operators (which
are designated by the subscript t) correspond to any plane transverse to the z-
direction, and the transverse plane may have any arbitrary cross section. That
is, the following derivations are suitable for any cylindrical geometry having the
z-direction as its axis.

First of all, it will be shown (see [10] , [11] , [12] , and [14) ) that
the longitudinal fields, Ez and Hz, can be expressed in terms of the transverse
fields, E-t and g_t Secondly, it will be demonstrated that the transverse fields
can also be expressed from the knowledge of the longitudinal fields. In the parti-
cular problem discussed in the text, the latter method has been adopted for the
solutions of Maxwell's equations.

If equations (5) and (6) are multiplied by z, in a scalar product fashion,

Ez and Hz can be expressed in the following way

I
1 . (-]
E = e—— V H x z - c——— (9)
z jwe°¢33 t —t -0 jw6°£33
1 Imz
H = V., 'z xE - (10)
Zz jweouss t —o =t jwuouas

where Iez and Imz are the z-components of le and _I_m respectively.

Now taking the vector product of (5) and (6) with 2, one obtains
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gox(Vx§)=-jwua§ox£ !-“'lmx&o (11)
gox(Vx§)=jwezox5’§+goxle (12)
Introducing
7 - 2
v't"!o oz '’
N RER
and H = &+_§°H ,
one obtains
- k-3
%o X (Vx E) = ViE, - 2z Bt
. on .2
and on(Vx H = VH -5 B
Now equations (11) and (12) can be rewritten as
) .
VB - Bz B = T, x gy Brl x 2 (13)
and
) _ .
Vo H - 3g B =jwez xg " E+z xL, (14)
where lm t and let are transverse components of lm and !-e respectively.
)
Again operating (14) by jwu ofo X M and (13) by o2 from the left one
obtains the following expressions
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9 a3 - 9 . 9
oz vt E, -3 B = - lwuy%; (!o x5 I—it) * oz imt X% (15)
. N .
and Jup z, X (u t VtHz)-jw“o oz (!o x b gt)

- - Kz x(g Tz, x 08 E—t)] tlokz, x (g, "z, x L)
(16)
where K¥ = Pu e .
oo
Adding (15) and (16), one can show that
-a—VE+jwuz x ( 'VH)+iz xI +(u,. 1,-jpu. .2 x1) 1
9z t' z () Et tz 9z <o = —mt 115t 120 ~ ~t° “et
05 1¥as, x an
where 1 = transverse unit dyadic (18a)
83 = H1%12 T (18b)
a, = K(€ pu +¢u)+az (18¢)
4 1k " T12k2’ T et
(Bppde = Ibg2 X 3) "Ly = -2, x (g "2, x 1) (18d)

Taking the vector product of (17) with Z, one obtains the following independent

equation:
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9 . 9 .
0z zo X Vth - j""“"oé-"t thz T oz -I-mt+ (1“12}'1: +“11-!o x‘-l't) let

=az x !E_:_t+jk’a31_i:_t (19)

Eliminating 2z, x E, from (17) and (19) by multiplying (17) by a, from the

left and (19) by jk’a3 and then adding the results, E‘t can be expressed in terms of

Ez, Hz, lmt and let in the following way:

. 2 - ' - 9
p1§t B [ 8'4 0z vth “’“oaz thz Eo x[jk’aa 0z vth+j"'moaivtnzv.

-l a .
[al‘-l't + jaélo X },t] l'et

3 e 211
- [‘4 oz Zo X 1 - 1Ky o }'t] It

(20)
where the following relations have been used.
4 2 2
pp =ka; - a (21a)
2 2 2 2 32
!t = - = -
a) = agu, - Kagu, = K€, (U, -u)+n, N (21b)
2 2 2 2 82
ah = K agu, -, = K€, K - o2 (210)

and the identities
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"t QtHz ) ullthz - j"‘12"50 xthz (22a)
Z) XM VtHz = M2 thHz+ju12VtH (22b)

By a similar method (or by duality of (20) ), one can obtain the expressions for }—It

intermsof H , E , I and I . in the following form:
z° 2z’ *mt “et
)
= |- a4
pl'lit [ a4 oz tHz+weoa2Vth]
a

D ka 5— - j"’eoalv th]

- ["11t-+ jagz, 2 —lt] "It

[a z, x 34'”‘ 83 Bz lt] Lot (23)
where
2
o2 22 P
8, = kp (e, -6 )+vé, — (24a)
0z
2 2 2 8%
8, = kK'u,(€,-€5- €5, 0 (24b)

Although the medium is anisotropic, if it is homogeneous (i.e., components
of € and 4 are not functions of position, althoughthey may be piecewise con-

stants) and source free (i.e., I = 0 = I ), one can show that E and ¥
“m e z z
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satisfy the following equations [using (20) and (23) in (9) and (10)] )

926 + 38 ¢ ""“J‘ssx o ¥

a' (25)
tz enHy 1z by z
jwe €,
2% alﬂz = - —6—9-23_ 8, (26)
€1M 11%11

where Ez and ﬂz are solutions of homogeneous (source-free) Maxwell's

equations.

To obtain the above two expressions, it has been assumed that % = -jx s
where P 4 is the propagation wave number in the z-direction. This assumption is
permissible in the situations where both the € , y and the geometry of the prob-
lem are independent of z, subject to another restriction, that the transverse
anisotropy of € and u are not coupled to the longitudinal anisotropy of € and B
respectively.

To obtain solutions for 62 and ﬂz, it is possible to have 4th degree
equations in E , and % from (25) and (26) by elimination. Since it is a tedious

task to solve such equations, one can alternatively find a function  which is a

linear combination of 5 2 and % , satisfying a two dimensional wave equation.

Let such a choice be

6 +ja% (27)
z Z
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Now multiplying (26) by ja and then adding the result to (25), one obtains the

following relations

v, (6 +jaﬂ’)+ 211"11 [ai -weolfasa Ez
Haa [ wu)(a:l ﬂ
- jo (28)
‘14 LT

The above equation can be represented as a two dimensional wave equation in §

of the following form

Vi p+q2p = 0 (29)
where
€ M wy 3(&
33 [ 2 Hg3 [ o 3]
a' ~wedaal = ¢ = - —_—— (30)
€1k, L1795 L €4 LT @

Solving equation (30) for o, one obtains

2. 2422
o o 33t Tt 1 ¥ [ 055-0 )" + 4k uge ] a0
1,3 2we € ¥a,

Therefore, the roots ] 2 can also be expressed in the following form:

1/2
ST < R - el v 8 [1 €33° 1“33) L ey
1, -

€1k 2e11“11 2‘11“11

(32)

The equation (32) can also be rewritten in the following form

2
T = v:./?-u (33)
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where
a'e +a ” '2+ '2
16337 %H33 My g
Ay - T (34a)
11%11
€0 M €
3333 [2 4 2] 3333 2_2
U = =222 g% k%l |= -2 p = iy (34b)
€4y LA 3 €y 1 12

Relations Between Various Parameters Introduced in the Above Analysis

First of all, the following new parameters are introduced and defined:

]
g . S3h a2 A (358)
M, € 1 H, €
11711 11711
1
I Y 2 we Eagkesry 35b)
Bi®yy 2 P1€11
= * - !
R =a Jla, - wp 8y (36a)
T = WH ! - Xa4a1 (36b)
R' = weoazaz-)Qa4 (37a)
T = weoazal—)ea4 (3b)
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| It will be found convenient to carry out algebraic operations in the sequel
using the relations listed in the following table. In tabulating the following results,
no attempt has been made to write them in such a way that any result is a conse-

quence of those preceding it.

a
1 s
: M : (38-1)
1
2 e T S (38-2)
1 wy€y, B11€13
1
o - €338  “ESaffayey (35-3)
2 Hén K11€11
2 _2
17 - ]
@ -a, = "neumz‘ 73 (38-4)
1 2 weXa € q
B b
o 33
aaq = -—23 (38-5)
1% €35
' Y7
€33%) 2 Y&,63378%39
8 = ==L g1 - (38-6)
H1%11 H11%11
E_.u. .S
4 ueu :ele (38-7)
023" 33
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!

R QR X
B¢ 2 H1€1
_ SfuHM

2 weo£a3633

L _s

a, -a '2_ '2

I "I 1

2 M

a, -a

2 2
14
S T

L]
81€33% 8 Hyq

€11%11

ey -

2 2
SRR

292 2
an3u33633
MS:-
&2 .2
11 H11
€, .u
42 2 11411 2 2
P =ka_a F—_ 1 T 1" '7'
1 3 4 633;433 1 2

SR+ MT = -wpa) (95 - 91h)

2 | ]
8 Me, 4 - Kagae,,
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R = xa a, -wual = == —
42 o2 we033633
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(38-8)

(38-9)

(38-10)

(38-11)

(38-12)

(38-13)

(38-14)

(38-15)

(38-16)

(38-17)
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2 L
k €558q8; - 8,8€) 4

= ! - =
T wuoaz Xa.4a1 " 6033633 (38-18)
2
Ma e u . -2 a.€
. s et bt 32433
R' = weoazaz-)(a4 = Xa3633 (38-19)
Sa, €141 '*233“4633
T' = we a, e, -)(a4 = "e33633 (38-20)
€.a -€ pu N’ - €y M (38-21)
3381 ~ “11F11M2 11%11
€.a -€ u n? =€ u.s (38-22)
3331 ~ ‘1% h 11%11
2,622
H..a - € u 2 X 33€33M33 = - Mu, € (38-23)
3381 ~ Sk S€, h | 1<
2.2 2
B, - E M 2 = ke a3633p33 = -Se pu (38-24)
33%1 ~ S11P1Me Me, 1, 1111
a(za = a -a u (38-25)
3 - BgH1 T By
2
8 =86€, -kae, (38-26)
2 = af ' ’
P4 8; = 8y€, a1612 (38-27)
) 2
a'1 = au, - Kk a3u12 (38-28)
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a! =k2au -8a,u

2 3h11 7 M2
=k2ae -a, €

) 3€11 " %4 12

2 1] -
k'agay -aja, = py,py

2 1 -
Rapg-aa = pp,€,

2
kaza,-aa, =€, p

kzéczaz -aal

3”83 ° PH &,

2 2 2
= Kup e, -ep)) ""2611

2 2 2 2
] T ke Gy - Hp) - eHyy

)
-
]

2 2 2
s = KHlE), '512)”&"12

20
\

2,2 2
- - +
8, = k'€ 0, -u,) *2“12

3~ €11k12 TR

o
1}

2 2
ay = Ky 6, +u,6,) - K
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It may be noted that all of the analyses and results obtained in this Appendix
are based on the assumption that the problem has a cylindrical geomet.y with axis
in the z-direction and having an arbitrary cross section which is independent of the

coordinate z.

Propagation of TEM Waves in an Unbounded Homogeneous Anisotropic Medium

Since the foregoing analysis does not include any particular boundary, it is
valid for an unbounded medium also. Hence, it is possible to obtain conditions for
TEM wave propagation in a direction parallel or perpendicular to the z-axis. It
may be mentioned here that a plasma and a ferrite with a static uniform magnetic
field in the z-direction will have tensor permittivity and tensor permeability
respectively. The forms of these tensors are given in equations (1) and (2). As
mentioned earlier, here also the medium considered will have both € and u as

tensors with constant elements.

TEM Wave Parallel to the Magnetic Field

For a TEM wave in the z-direction both Ez = 0 and Hz = 0. If the source
terms in equations (20) and (23) are equated to zero, non-vanishing values of Ijt
and ;_-I_t are possible if and only if A 0, when Ez =0= Hz, provided the elements
€ 11° 633, "11 and Hag are finite and non-zero. The condition P= 0, gives two

TEM waves propagating in the z-direction. These two waves are characterized by
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the following expression of the propagation wave number o€ in the z-direction

$2
— (" +
l2 '2 l2 2 -
Since p is proportional to 1]1 f|2 , the condition 'fjl flé = 0, is equivalent to
TEM wave propagation in the z-direction, provided the diagonal elements of €

and u are finite and non-zero.

TEM Wave in the Direction Perpendicular to the Static Magnetic Field

The conditions for a TEM wave propagating in the direction perpendicular
(i.e., perpendicular to the z-axis) to the static magnetic field can be obtained upon
substitution of &= 0 (i.e., j:? = 0) in the expression (32). This substitution gives
two propagation wave numbers 7 '1’2 which represent two TEM waves in the trans~

verse plane of the z-axis

%y €33 2 2

1

— = == ., -u) ., (40a)
2 u, 1"

and
1
2. e33 “fl“'fz’ (40b)
K 11

The results obtained in (39) and (40) agree with those obtained by Van Trier
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[1] by an entirely different approach.

When p, = 0, a study of the expressions (33) and (34) shows that ;= 0,
provided the diagonal components of € and y are finite and non-zero. It can
be shown also that such TEM modes in an unbounded homogeneous anisotropic
medium do not vary in the transverse plane, but in a coaxial waveguide TEM waves
behave as 1/r in the transverse plane. The above statement follows from the fact
that for a TE M wave the transversely varying part of the transverse fields can be
derived from -V tﬁ(g), where §(p) is a scalar potential dependent on the transverse
coordinate p.

The two waves given by (39) are known as ordinary and extraordinary waves
in the literatures of the ionospheric wave propagation. The permeability of the
fonosphere is a scalar quantity and equal to that of free space. These two equations
also explain the phenomena known as Faraday Rotation. The two waves represented
by (40a) and (40b) can be said to explain [1] the phenomena known as magnetic

and electric Cotton-Mouten effect.
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APPENDIX B

CONSTRUCTION OF DYADIC GREEN'S FUNCTIONS

»

Although a construction of Dyadic Green's functions from the source-free
solutions of Maxwell's equations for inhomogeneous anisotropic non-dissipative
media in a uniform waveguide of arbitrary cross section bounded by a perfect con-
ductor, has been discussed in [13] , they will be also briefly presented here for
the sake of completeness of this work. In this appendix the corresponding results
for anisotropic dissipative medium will also be obtained.

The most important technique involved in the construction of dyadic Green's
functions is the determination of an appropriate orthogonality condition among the
source-free solutions (i.e., eigenfunctions) of Maxwell 's equations. Methods of
finding such orthogonality conditions have been discussed elaborately by the authors
in [9] , under different situations.

Here an indirect method will be presented for the construction of dyadic
Green's functions [12] . In this method it will be assumed that the sources are
due to some discontinuities, which causes discontinuities in the fields also.

Dyadic Green's functions Z(r, r'), I,em(l_', r'), XY(r, r') and zme(g, )

are defined by the following expressions:

g - - ({{ 2o Lo -fif 1 00 e (1)
A v
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H() = - S S j Y@ £ ' L_()av: -Sggme(g, )L (r)av' )
v

Where the E(r), H(r), 1., I have the same significance as given by the
Maxwell's equations (5) to (8) of Appendix A. Instead of volume currents, ifle
andIjn represent surface currents, the volume integrals in (1) and (2) should be

replaced by surface integrals (over the regions of surface currents).

In the following are given the physical meanings of dyudic Green's functions:

- g(:, Ir') " u = electric field at r due to a point electric current source at
r'!, directed along the unit vector u.
- L) =
Tn® )Y

electric field at x due to a point magnetic current
source at r', directed along the unit vector v.

- Y(r, r') ° v = magnetic field at r due to a point magnetic current source
~ at r' directed along the unit vector v.

- Ime(z’ r') " u = magnetic field at r due to a point electric current source
at r' directed along the unit vector u.

In the above statements the point source means a source which has spatial variation
as a Dirac delta function §(r - r").

Let & (r) and %(g) be the solutions of the homogeneous (source-free)
Maxwell's equations (3)

Vox £@ - -jony 4 (3a)
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V¥ - wee € (3b)

where u(p) and €(p) are functions of transverse coordinate p only.
Since under appropriate boundary conditions, £ (r) and ﬂ/(g) form a
complete orthogonal set, the total fields E(r) and H(r) due to any arbitrary source

can be expressed as a superposition of & (r) and 1(5) in the following way:

-2_ At (42)

E® -
a
and
H(r) = E A ZLa(g) (4b)
a

where Aa is the coefficient of expansion corresponding to a-th-mode (eigenvalue).

Reciprocity Relations for Homogeneous Maxwell's Equations

To establish Lorentz's reciprocity relation and hence an orthogonality
condition it 18 desirable to consider another set of Maxwell's equations. This new
set of equations is some time s called the Adjoint-Maxwell's equations [9] . After

taking complex-conjugates of these so-called adjoint equations, the resulting

Maxwell's equations have the following forms:

p "
V x g‘B - oy # ] (5)
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" *
+ 11
vV x %B - -we g - £y (5b)

and ﬂ«

for

"B

the solutions of equations (3a) and (3b).

+ +
where u , € = adjoint of u, and € respectively
= complex conjugate of the transpose of K and € respectively.
*
+ ~
4 = 4 = transpose of u
~r o~ -~
b1 gt 0
= B9 oo 0 (6)
0 0 H33
+*
and € = € = transpose of €
€11 1€ 0
= 1512 €99 0 (n .
0 0 € 33
* [1]
Although the authors in [9] have used the symbols é g for £ 8
*

in general ﬁ 8 and ﬂ 8 have no simple relations with

Thus, to avoid confusion, the symbols
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" " " "
& 8 and ;% 8 have been used here. Here é 8 and }B only mean the solu-
tions of (5a) and (5b), subject to some appropriate boundary conditions.
" 1"
Now multiplying (3a) by ZLB and (3b) by é 8 and (5a) by "ﬂa and (5b) by

£ o in a scalar product fashion from the left and then subtracting, one can show

that %M ﬂ 6“
\% '[éax_s- A x _B]=0 (8)
Since
*
. € + . " _ "o .
éa A~ éB = éB é_ éa (98.)
and
. +* . " "o + .
#a £ #B = 13 A jﬁ (9b)
Let 7 =V t + z, aiz » where z, is the unit vector in the z-direction.
9 = - N .
No.wusing Py 60--13&,@0. ry" Z/’a--jJ(,ZAa
and

*
) " (1] 9 " "
az 6 B = ij CB » az #B = j* %

equation (8) can be rewritten in the following way

Vt . [_éa x g’:g- Zé x é"ﬁ]. = j(xa_x;) [-64‘11'; xEoi'#az.ﬁo xé;]

(10)
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Now integrating over the cross-section of the waveguide one obtains (using the two

dimensional divergence theorem)

Olext, e vx 6y & Jo -st (6, Hpes, o 2,ety s

8 S

where v is a unit outward normal vector on the boundary curve s of the waveguide
cross section S,
The left-hand side of the above expression vanishes on the boundary of a

perfect conductor

. ' . the orthogonality relation becomes
S;[ﬁa'l‘ﬁxzo%‘a' z, x éB] as = 2N 6 o (12)

where Na is a normalization constant and

§ =1, for X = R
a

*
af B

%*
=0, for Xa'f XB

When the waveguide has a reflection symmetry, i.e., when the properties of the
waveguide are independent of the coordinate z, the orthogonality relation can be

rewritten as
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SS € ‘ﬂ“ xz dS = Naéaﬁ =552£ z x Q; ds (12)

a B -0
S S
or ,
SS 6&: ' th x z dS = NQSQB = SS #ta "z, x étﬁ ds (13)
S S

where the suffix t represents the transverse components of the fields.

Construction of Dyadic Green's Functions (see [11] and [12] )
Knowing the total fields E(r') and H(r') which one may consider are due to

discontinuity at some cross section Sz of the waveguide, one can write, using

equation (4)

ZP'B'(!') X 2, . Z Aa Ca(l:)

a

¥ xz, " EE)

2, x G HEY =5, x 00 D0 A F

a
Integrating the sum of the above two equations over the cross section at Sz

and using (11), one obtains the value of the coefficient Aa as

SS (e #ler x 2, + 1) 2, x Elter]
S

A = -2 (14)

2N
a
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Therefore, the total electric field at any point r due to E(r') and H(r') is given by

0 e (20 ¥ x2, + 10 PRI X

E) - Z ¢ o Z’ 2 =

o

which can also be written

EmE
T\ [Z#] |z, x HE) a8

S a a
z

a

;) paEALI IR -

Since z X H(x') and E(r') x 2 represent sources due to discontinuities

in fields at r', one can represent
' = ' t = ]
zo x H(") Iet(r) and E(r') x z 1 1:(r)

Alternatively one can consider the discontinuities in Z, X H(r') and E(r') x 2,
at r' are due to actual sources _}_et@') and lmt (r') respectively. Now with the

above assumption if one compares equation (15) with equation (1), one finds

£0 € @
2

(16a)
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5 Ew %, )
Tm® 2) = 2 ~ (16b)

Similarly if one expresses the total magnetic field as H(r) = Z Aa a‘a@) and

o
uses equation (14), following the above procedure, it can be shown that

5 Y w¥ @)
o 2N

Y, 1) - (17a)
2 ©0E )
Ime(s’ !') = Z -_-_(!___2_ (17b)

2N
a a

Special Cases
It has been pointed out before that in general there are no simple relations

between éa and é ; and z_ﬁia and /_#; , but in some special cases these

relations simplify. For example, in non-dissipative anisotropic media &+= €

-

and _/f = p, i.e., & andu are hermitean (self-adjoint) dyadics. In this case
* *
é =¢, #"=/¥.andxisreal.
a a a

Therefore, for non-dissipative medium, the dyadic Green's functions can be

expressed in the following way

*
6,0 €, @
TR DI (18a)
a a
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E 3
Lo - Y S0

3"em = 2Na (18b)
ﬂ*
Y@ ()
Y(r, r') = Z "—%Ea—- (18¢)
a a
*
2 wE @)
Tool® £V 7 D =g (180

a a

Another kind of orthogonality relation and hence dyadic Green's function can
be constructed in the following way (see [9] ). These results are particularly

suitable for dissipative medium.

In this method the following replacement is made

g"-’ E = transpose of u (19a)
&' € = transpose of € (19b)
—_—

+

X -H-A (19¢)
” .

€ +¢ (19d)
a a
" t

%a—) tha (19e)

Due to the transformations given in (19) and the Maxwell's equations (3) and

(5), the following simple relations can be established
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Co s Clp by D =+ E X -€ b D) (20a)
and
1;(*&: 6120 “123 I) = t %(-xa: -élzl -“12: I) (2%)

Therefore, for the dissipative - anisotropic medium the orthogonality relation and

dyadic Green's functions can be expressed in the following way
' !
SSS [ca Z(B X2 ﬂa 5 X éB] ds = ZNa Saﬂ @1
If there is reflection symmetry in the waveguide then

55 éa'ﬂéxgoﬁsNasaB - ijya'goxéﬁ'ds (22)

ea(_'¥ € 12° “12 é (!o ‘xao -‘12' '“12)

Z(, ) = - Z T EEE— (23a)

a a
e (_1_'.‘ » ‘120 "lz)z (_l_' ’ x » '612. - “12)

Top'™ X = Z —= 2; < (23b)

a a
2, 6 m)H (e K o€ b))
9N (23¢)
a
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For dissipative medium a(a and Na are complex.
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can exist independently. This approximation is also valid when (ka) << 1, where
2a is the diameter of the anisotropic column.

For static approximations it is easy to show that

-
€ a' € a3
n,lzz Z ~ - z
€ty €r
23
1 3 izﬁ “z
My ¥ e =T T4
rr r
S =0
M= -(n?-ny%
n=x~ -jo

< (2)

Now using these relations and the assumption k#€ ¢ 1, it can be shown from the
dispersion relation (1) that for the H-type mode the right-hand side of the expres-
sion (1) vanishes and for the E-type mode the denominator of the left-hand side of
(1) vanishes. For a magnetic current ring source an E-type mode will be excited

in this static-limit situation. Whereas for an electric dipole source an H-type mode
can be excited in the static limit. It is of practical interest to consider the E-type
modes in a plasma and the H-type modes in a ferrite. The following dispersion

relations for these two limiting cases can be expressed in the following way:
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(n"a)e i:"n-:ﬂ - ne' = -(fa)e, (I;)::)KE(;I))- ;n:b)zl'l:::)ﬂ 3"
r J (n'a) [In )K 0fa)-1 &a)K | l
for E-type modes
and
') J! (n';a) e = ot [I;l(lb)K;‘(Jla)-Ié(J(a)Kl'lﬂbﬂ W
e T R ta [, 0oIK 0fa) - In(l(a)Kl"Wb)]

for H-type modes

When the anisotropic medium completely fills the waveguide, i.e., when

a = b, the above two relations reduce to the following:

Jn(n’la) =0, forn {0
for E-type modes  (5)
and forn = 0, Jo(n',a) =0

It should be noted also that in this case a change in sign of n does not effect any

result,
J;‘(n'za)
(n'sadu T W
o ?  for H-type modes  (6)
and forn = 0, Ji(n'sa) = 0 )

When the radius of the waveguide b —+ o, the above equations (3) and (4)

reduce to the following simple forms:

*These results agree with those obtained by Trivelpiece [8] except for a change
in sign in the term nu' of equation (4).
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For n = 0, the above relation becomes

Wrhatad el 27 o(nia)JI(naa)-an&{J:(n&aHJ?(niaﬂzGo(a)Jo(a)
e’,f‘:.[ezn{(a){%(n'la)Jo(nia)|E1;’-~§+an'1S@f,(n'xa)ﬂf(nla)} 1261 C (@)9%(nta))

= rszo(a){ZJo(n&a)Jl(n&a) E1'13+S] -aniS@:(n;aHJ:(nia»} -21.&,77'138 o(a)J:(nia)

(10)

For n = 0, the dispersion relations (55I) and (56I) can also be derived from the
relation (1).

It should be mentioned here that all the following dispersion relations for
various special cases can be derived from any of the general relations (55I), (56I),
and (1) of this Appendix. The purpose of writing these various forms of the general
dispersion relation is that it is found more convenient to use one particular form
rather than another for some special cases.

When the anisotropic medium completely fills the w -eguide (i.e., when
a = b), the corresponding dispersion relation (without using .oy approximation)

becomes (since Gn(b) = Cn(b) = (-"27)) s '/n (b) =0 = Sn(b), ata = b):

J,’,(n'aa) J;l(ﬂ'xa)
ae_p Mn'"n's J—n(—n,z—a) - au € Sn'in'y’ W = ne,a'yny-n}?), forn # 0

(11)
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n'aS Ji(n'sald (n'12)
d = =
an M Jo(n'za)Jl(n'1a> , for n=0 (12)

If one analyzes equations (34I) and (35I) or equation (32a) of Appendix A,

it is easy to show that in the limit €' =u'=a, —» 0

3
€a'1 € 3
Mt o= =2 = £
€Hr “r
i - Ha %
“r Ky
S =0 >
= < ('3 _ .2 - .2 =
M (n'g* - n'y9), €3, - N, = €8
S L. €ca -€eny?® =eM
a, * Tgiq Tyl r
1,12 _ gt
BNy - ahge, ) 2 €_z
a = -X €
3 r
5 (13)

Now if one divides the numerators of both sides of (54I) by ag and uses

relations (13), the dispersion relation can be shown to have the following form,

after rearranging terms:
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2

Erm'le'x("'la) ) €8 4Cn(a) urnn'ng'l(n'za) . u2a4sn(a) ) nX(a4-n’
Jn(n'la) Jn(a) Jn(n'ga) G n(9.) B kan

(14)

For an isotropic medium, the dispersion relation can be obtained from (14)

12 - 12 - = -3 = =
letting 0% = n'y’ = a, kzer X2 and €. €, B H.

For axially symmetric fields (i.e., when the ring source is of constant

strength, _389— ® 0), n =0, and one obtains from equation (14) the following

dispersion relations

€ mhd, (n",2) €,a 4Co(a)

W = - o(a) , for E-type mode (15a)
and

pomahine)  aS @

_W = W , for H-type mode (15b)

The relations (15a) and (15b) can also be obtained from (55I) with appropriate
limiting procedures.

It should be noted here that for axially symmetric fields and €' = 0 = y',
E-type modes and H-type modes can exist separately. But in the present problem
where the source is a magnetic current ring source, only E-type modes will be

excited for €' = 0 = u'. Further it may be stated that even in an isotropic medium
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9
! = =y = = e - -
(i.e., € =0 =y and € =€, andu uz) if 5 # 0, E-type and H-type modes
cannot exist independently.
If nf0, buta=b and €' =0 = ', it can be shown either from (11) or from

(14) that the dispersion relations become

Jn(n'la) 0 , for E-type modes (16a)

and

0 , for H-type modes (16b)

J ;1(" '3&)

It i8 now trivial to see that for n=0, a =b and €' = 0 = u', one obtains the

following dispersion relations

"
o

Jo(ﬂ'xa) , for E-type modes (17a)

"
o

Jy(n'3a) ,  for H-type modes (1)

Relations (16) and (17) are valid for isotropic media as well as diagonally
anisotropic media. However, in our present problem, we consider only (16a) and
(17a), restricting our consideration to E-type modes (due to choice of the source).

+When an infinite column of an anisotropic medium is placed in another

unbounded isotropic medium, the corresponding dispersion relation for surface

*1t should be noted, however, that to obtain radiated fields in the present situation,
this limiting process (namely b —» o) is not valid.
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wave s can be obtained either from (53I) or from (54I) with b — . To study sur-
face wave propagation (which is also slow wave), for which #/k > 1, one can

show that n is purely imaginary. So putting n=-jé , § > 0, one obtains

L@ = -@/n1 DK (5a) - 1 (SaK (5b) s
8 (a) = -2/n-[I'Ea)K! () - I(5DIK! (Sa)) (18b)
C (8 = (12/x)-[I'(Sa)K (D) - 1 (SLIK! (Sa)] (180)
G_(@) = (j2/x) - [T(8BIK _(Sa) - T (Sa)K! §b)] (184)

for convenience let

4,(x) = 1 (SbIK (§) - 1 (STIK (8b) (19a)
8 (r) = I (Sr)K/ (6b) - I'(SbK' 1) (19b)
C () = I'(Sr)K (Sb) - In(sb)K;l(S r) (19¢)
G (r) = I'(SBK (§1) - I (§r)K!(8b) (18d)

Also it is easy to show that (if n ¢ §b, & may be finite or very large),

- Kn(é ae éb
A ————m , a8 b— o (20a)
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When n = 0, the above relation becomes

S{Juzl{o(é B.)J 1 (ﬂ'l a)+n'1ugK1 (é a)J o(rha)} ) é € ZKO(6 a)J 1 (n'1 a)+€,n'1K1 (é ..)J O(n'l .»)

M{Su K (Sal;(n'salm'yuky () (e} Se K (Saly(n'salremn'sKi(Sal] (n'pa)

(22a)
The equation (222) may also be written in the following form:
€ zuz(n'z’-n'x’) €aia(n's®-n'y?)
" e K:)(é a)J;(n'ia)d;(n'sa) + —zT Kf(éa)Jo(n'la)Jo(n',a)
E"‘zM_“’ezs] [e,u zs-“’ezM:]
- & Ko(éa)Kl(éa)Jo(n&a)Jl(nbaH T Ko(éa)K,(Ja)Jo(naa)Jl(n&a)=0
(22b)

When the anisotropic medium completely fills the waveguide in such a way that
a=b >)1, the corresponding dispersion relation+ can be obtained from (11) letting
a >) 1. It should be noted here that if a >) 1 in equations (21) where the limit

b —» o has been taken the result will be different from that obtained from (11) with
a >> 1. The reason is that if a > 1 in (11), it also means a =b »> 1, but if
a»>1 in(21), it means that b >> 1, a »> 1, yet a # b. The difference between
the above two results can be shown rather easily for n = 0 as follows: either from

(11) or (12) one obtains the following dispersion relation

*When a = b — oo, there is no dispersion due to the boundary.
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n'sS tan(n'sa - x/4)
"M : tan(na - x/4) ’

as a=b>>1 (23)

and from (22a) one obtains

S{Juzsm(nia-r /4)nimcos(nia-r / 4)} s ezSin(nia-t [4)+esnicos(nia-7/4)
M{Jyzsm(nga-: /9 mymcos(nya-7 /) i} Se_Sin(nba-7 [4)1+eanycos(nya-x /4)

for a>>1,b>>1, buta # b. (24)

For €' =0 = u' =a_, the dispersion relation (21) becomes

'[eré n&Jj,"(nia) . ezalK!"(éa)] [_;gnw;_‘(nka) . bt 4K!"(éa)] ] nl(a 4+6’) 2
3 fn'va) K (52) J 3 {n'sa) K (a) ka $ a5

Equation (25) can also be obtained from (14) directly using n = -jé , and letting
b—r 0.
For n = 0, the E-type and H-type modes separate and one obtains the fol-

lowing two relations from (25)

gré ﬂ'lJl(n'la) 63841(1(6 a)

_3:(;‘_&)__ = - —W for E-type modes (26a)
and

#8119 (n's8) ta K (8a)

W = - —KW for H-type modes (26b)

It should be noted here that for isotropic media, n'; and n's in (25) and (26) are
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= 13 = = -8 = * =
n'y n'y a, k’erur X?, where €_ €V K.

For e'=0=u', n=0 andalso a=>b >>1, it can be shown either from (18) or

from (23) that the dispersion relation reduces to

cos(nya - x/4) = 0, for E~-type modes, a >>1 (27a)

and

sin(n'ga - #/4) = 0, for H-type modes, a)) 1 (27b)

Now it is also natural to discuss the dispersion relation for a ¢{ 1 and b finite.

To do this the following approximations will be used (see [1 7] ):

n
Jn(x) ~ k%}— , for 0<x<<1 (28a)
N (x) ~ (2/x)log (—"25—) , for 0¢x¢<1 (28b)

where o =1, 781072

n
N ( ~-‘—l-°'“(3), n f 0, 0<x<<1 (28¢)
n 1 4 X
Ko(x)~ —log(%). 0<x <<l | (284d)
' n
kw~ 82 (2) 0 4o ocxca (28¢)
n-1
J(x) ~ X , n)l, 0&x<<l (289)
n 2%(n-1) !
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n! 2n
Nx'x(X) ~ = forny 1, 0<&x«¢<¢l (28g)
X
' nt2™ (28h)
Knx)~ - xn+1 , forny 1, 0< x¢¢l

It will be assumed that na << 1,

n"1a <¢1, My a<<1, in addition to a <¢ 1.

Then, one obtains the following expressions:

LGl wzir (2
Gn(a) n Nn(nb) + 4 n Jn("b)

2 n!

-1 72\ z&)
Nl § m) 3 (nb) - N_(nb)

n!2n

Sn(a) . (m)nﬂ n

' n
c ()~ 212 J(nb)-—'ﬂL— N_(nb)

3 (nb) - o™ ! (nb)

2n'

2 (n-l)'

™ 0 -1 ol
\ / (29)
G (8) ~ - Ny(nb) + % Jy(nb) log ("’—'273)
4 () ”?2: 3 _(nb) log (m) - N_(nb)
5,0 ~ - 2= 5inb) - B ) [
c ) ~ 2= g o)+ -—';’ N_(nb) J for n = 0
(30)
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Thus, for a<< 1, na << 1, n; a<< 1and ry'2 a << 1, various forms of the
dispersion relation can be obtained merely by substituting these expressions in (54I),

(551) ete.
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APPENDIX D

A NUMERICAL EXAMPLE

In this appendix, results of numerical calculations will be presented for
a special case of the physical situation described in (14a) of Chapter II.
A normalized value of the electric field, Ez, will be computed as a function

of i for the smallest eigenvalue, n'; , where we are treating the case

m2 >0

n'? <0 >

1-x >0
1-y >0 >

2>x+y > 1

with the specific parameter choices

ka > 10

€

=1

Ak = B = 2.5(> \/eu, )

THE UNIVERSITY OF MICHIGAN
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3

4

6 (which represents a glass tube)
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2
aé =ka,1[32- €gp = ka 32-6

a = 1073 - &)
3

¢c=b=2x10

-

First the lowest eigenvalue must be determined. To do this, first some

necessary constants must be computed as follows:

d =c =1@EbK6a)-1(62)K (6b) > 0
Eo = ¢, = [(6D)K (8a) +1 (53) K;(6D) > 0
» (3)
§° = c; = L(Sb)K,(§a) -, (8a) K, (6b) > 0O
Co =c, = IILSa) KO(Sb)+I°(6b) K (6a) >0

n'y (y) will then be computed from the following expression

'} 1

21 -y) {y(l-x)+y -wxy+yf(y;}, (4a)
KB 2(x+y-1) [ { }

where v = BZ -1, (4b)

and 12 (y) = wz X2 + 432 x(1 -y), (4c)

For a range of values of y (wherel-x< y < 1).

Starting with y corresponding to the smallest value of 1n'; obtained from

(4a), the function G{(n'; , y) given below will be computed for neighboring y until
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a change in sign is obtained. [1. e., we want to find lowest value of n';/k which

satisfies G(n'; , y) = OJ

(1-ye, c. di(nta)j(pa) e€c.c,d (nya)l (pa)
Gy, y) = @+ [ r P ]

n'1 P s
J o(n'la) L (pa)
T [e’ Moy, - (1 - y)“"’"1"3]
Io(pa)Ji(n'la)
+ [(1 - y)Mclc3 - e,Sc4cz] T =0
(5)
where 9
P (y) '’ yi®) 0y o
—g = = - ) a
K2 K xiy-l K2
2
k(-yWi-xn , |[x+ty-1 2 2
M = x+y-1 [ 1-x + B:]"’P (6b)
= 2 3
8§ =M-0("+ n)

It should be noted that neither n', = 0, nor p = 0, can be a solution to (5).
When the lowest eigenvalue n'; is determined, l E, | will be calculated as

a function of r from the following expression where all relevant parameters are

evaluated at the previously determined lowest n'y .

c| Ezl _ we €3¢ g, Iss1 Io(pr) - MJo(n|1rﬂ
T

8
m 52(P2+ﬂ'12) . 2
2=1

Fe b Vgor Ogrga (7a)
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2 —
2we €3¢ I E,I J o(r)
= 2 B , foragr ¢b
T 2
VAR
L=1

where

F. =

xj
"

p [602J1(n'1a) *+n'yeld (n'1a)
§ = 1 L(pa) + I (:
n'y [602 ,(pa pc,l (oa

T £§1Io@a) - MJo(n'lf)J

2
201(P + n'lz)

E =

F = Le, €, n'? [er p2 ;{l’; +uuop2§' k Be']
Fy = -JLe € n1p & [wuo °TIKB €'+ € Rny? §J
Fy = - jLerezpr,; & [w pon'lzl’;' k Be' - erpZ;(T],
F, = -Lege, p2 612 [w pon'lz 'f"k Be'+e T n',3 S] ,

wk

82

by 3¢

6‘
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(o)

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

wkf 4 .2 4 .2
52 [‘o" w{1gen + 5 en}+ u g {dend o “"’&] o

kB [eoe,g}xo(s by jlo(Sb)-i-% xo(sb)} - uoggx,(sb){ j % Kl(tb)ﬂlﬁb)}]

(8h)
(81)
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Ry = L (e il 6m+u 260,

8 62
rwe € €'k
g - —25— [ me-51Ga),
2¢_c,(p“+n43)
T2
wzezeze'kB
L = —2%%
4 2 2 2
eJo i3 mh|
K2e M(e_- 32) ~xle e
r r z
R = ' »
WE € €
oz
2 2
Bt - kB erM-ezk (er- B ﬂ
E e
Z
k*e e?- K2 Se_- 32)
T a z r r
we € €' ’
0z
2 2
o kB ers-kez(er- B)]

€
4

3; (¥) = 1 6D)K (61 -1 (D) K (6b),

.k
R A

S U
o 36x
Hy = 4r x

(in M.K.S. unit)

107" (in M.K.S. unit)
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(9a)

(9b)

(9¢)

(9d)

(9e)

(9f)

(9g)

(Sh)
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€z=1-Y:
€ x+y-1
r x-1 !
e':LE

x-1

2

W
n

2 2
%"‘ [Jl (n"a) - _’1_'1: Jo(ﬂ'la)Jl(n'la) + Ji (n'la)].

* _ ja 1
g = L = @2+ mh) [pJ1(n'1a)Ig(Pa) + 1"y L(pa)da(n la):]a
ZIo(pa) L(pa)

2
e [fewr =—F— - D).

=
"

21 (6b) I;(6b)

2
_ b I M
L -2 [112(811)+ — - rﬁ(sb)]

21 (6a) ,(62)

2
- _a2_ [:112(651)+ ~—&sa - Iﬁ(&a)]

(99)

(k)

(91)

(10a)

(10b)

(10¢)

(10d)

b

* b2 I (8b)K;(6b)-L(Sb)K ($b)
16 = 17 = j15 + T [I,(Gb)Kl(Sb) + IO(‘b)KO('b) + Y ]
P
a2 I (sa)K,(8a) - L;,(8a)K (6a)
- = [:11(6a)K1(Sa) +1 (§a)K (8a) + 9 T 9 :I
(IOe)J
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2 2K (6 b)K,(5 b)
- 2|2 0 2
I =L+ =3 [Kl(bb)- T - KO(Sb)]
2 2K (8 a)K;(82)
B[~ — - ea)]

(10)

Discussion of the Computation Procedure and Results

Starting with y values near 1.0, it is found that n', increases very rapidly
as 1 - y increases. An analysis of the expression for G shows that the first zero
of G will occur shortly after Jo(n'1a) changes sign, i.e., when n'; a is slightly
greater than 2.4, i.e., n'y > 2.4x 103 (with a = 10-3). With the given parameters
it is found y is very near 1.0.

After finding n'; , and the corresponding x and y, for which G = 0, various
expressions in equations (8), (9) and (10) have been computed. Since the parameters
8 a, 8 b are large in this calculation, the asymptotic formulas for evaluating
Io(z), Li(z), Ko(z) and K;(z) have been used (where z stands for either § a or §b).
With the parameter used, Ko(s b) and K;(8b) are very small and nearly all terms
involving them were insignificant. However, the form used included all operations
and can be used, without alteration, for any set of parameters.

It should be noted that, although some of the F, and I, in (8) and (10)
are real, some pure imaginary, and some complex, all imaginary terms in the

summation cancel out, and hence 2 Fl Il is real. This fact is in agree-
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ment with the theory as discussed in connection with the equations (82) - (84) of
Chapter I, where it is stated that the power-flow in a non-dissipative medium is
real.

Computation has been completed for the following cases:

CaseD) x = O.7andx = 0.5, withka = 2x10° and B = 2.5(or B° = 6.25)
Casel) x = 0.7andx = 0.5, withka = 10°, &2 = 6.000025
Case I x = 0.7andx = 0.5, withka = 7, 8° = 6.005102041

The following pages show tables of values of many of the variables involved,
c|E clE
l zl' for 0 < a < b. Also graphs of m 2 in the range

and the values of

0 < r/a < 1,0 corresponding to the above cases have been shown. For the range
c | E

r » a, the values of are too small to show on the graph.

The behavior of all the graphs plotted here is more or less the same. It is
the nature of the slow waves. The higher the value of 8 = -% , the slower the
wave. Moreover, the higher the value of €3, there is a minimum value of B, for
which a corresponding slow-surface wave can propagate. Since in the above com-
uptation €3 is chosen to be 6, the minimum value of B is greater than 2,45, On
the other hand a larger value of €; will permit a lesser slow wave to propagate.
Although the above statements show that the degree of slowness of the surface

waves is markedly influenced by the value of €3 and hence f, the strength or

amplitude, however, of these waves depends on various other parameters. For
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2
W
example, in the Cases I and III the graphs show that higher the value of x = £ ,
W

[ )

c lEz
the lower the amplitudes of m On the other hand, in the Case I the

clE
graphs show that the higher the value of x, the larger the amplitudes of lln 2 l ’

although the values of B in all of the above cases are of the same order. Moreover,
the graphs of the Case II show that the amplitudes of 21_1!5' is about 10299
times higher than that of the Case I and is about 10 times higher than that of the
Case III. Therefore, the above discussions of the numerical results suggest that
for any practical purposes the results of Case II will be of greater significance.

Al] the graphs plotted here change monotomically, because of the higher
value of 8. On the other hand, if 8 is small (and hence the smaller value of the
parameters (pa), 8 a etc.), it is expected that there will be a few oscillations of
c—-!:—z' in the range 0 < r % a. In support of this statement reference may be made
elsewhere (7] .

Finally, it should be noted here that is is the value of § a and & b which

played the significant role in producing tremendous difference of amplitudes of

c |E
-—;szl in Case I and either Case II or Case III. In the former case, the value

of § is much higher than that of either of the later cases.
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1, 3133007 x 10-324| 9, 5302916 x 10-325
5.7733840 x 10-329 | 4, 1895703 x 10-320
2. 5420886 x 10~333| 1, 8453555 x 10-333
1.1220024 x 10-337| 8, 1421868 x 10-338
4. 9582059 x 10-342| 3, 5080855 x 10~342
0 0

-1.470483272 x 1058 | -8, 895189885 x 10-58
3. 396160086 x 10-8 1.896654271 x 10-8
5.107586708] x 10-207( 2, 230758055) x 10-207

-8.171358617] x 10-208| -3, 5689678005 x 10-208
2. 429623822 x 10-405

1. 347570276 x 10~7

1, 081285373 x 10405
1.347570418 x 10~7

4386-1-T
CASE 1
2 [ Ez}
Summary of Values for ak = 2x10°, 8 =2,5 Values of -
.1 .5 r/a For x=,17 For x=.5
y .9999731125 . 9999849842 0 | 8.7558211 x 107288 1, 1286428 x 10-298
f 3, 675064017 2. 625035752 .1| 8.6207345 x 10-299 (1, 1123792 x 10-298
'y 2.405305068 x 10 2. 405160330 x 103 .2 8.2566278 x 10729 | 1 0842012 x 10298
P 4, 582578887 x 10° 4, 582578191 x 10° .3| 7.6526916 x 10-299 | 9, 8645246 x 10299
M 2,100042480 x 1011 2,100045835 x 1011 .4| 6.8438881 x 10729 | 3, 8220867 x 10-287
8 -1,8291 x 106 -1.4301 x 106 .5| 5.8848043 x 10-299 |7, 5601706 x 10~289
£ 9. 062018575 x 10-397 | 9, 064671742 x 10-187 | 6| 4.7570082 x 10-299| 6. 1323402 x 10-2%9
£, 1.574477758 x 10745 | 8,863836389 x 1078 | 7| 3.5670449 x 1072% | 4, 5085988 x 107299
€ ~2. 333243708 - 9999609684 .8 2.3442840 x 107299 | 3, 0225528 x 10-299
€ -2.1788791769 -1, 414192327 .9 | 1.1385480 x 107299 1, 4684109 x 10-299
-4.228047963 x 1024 | -5, 405747531 x 1024 .0| 8.3350942 x 10-393| 6, 0491791 x 10-303
-4.524434966 x 1019 | -4, 107746983 x 1018 .1| 3.6088193 x 10397 | 2, 6188111 x 107307
-9.111703604 x 102! | -6. 992432040 x 102! .2| 1.5687972 x 107311 | 1, 1384287 x 10-311
2.510277019 x 1017 1.926178007 x 1017 .3/| 6.843 557 x 10~318| 4, 9860890 x 10~31
-1,187508895 x 10-47 | -7.847883607 x 1048 .4 2.8941111 x 10-320| 2, 1727350 x 10-320
5
6
7
8
9
0

ISR ol ol ol ol o

T I L LT

2.205105178) x 10188 | 2 208083423) x 10188
-2.205106178) x 1 -2.2065083423) x 10
4.126606500 x 10385 | 4.126122615 x 10385
3. 842002089 x 1080 1. 481363914 x 1080
Fg 1.474033508 x 1093 | 568548845 x 10-94
Fg |-5.502484518 x 1079 | -4. 4098151006 x 1079
3. 842002889 x 1080 1. 481363914 x 1080
4.139432976 x 10162 | ¢ 139482976 x 10162
Ig 3.183039180 x 10® | 3.183089180 x 109
4.139482976 x 10162 | 4.130482976 x 10162

£, 1, | 4576576513 x 10715 | 2 ssga75180 x 10715

L A AT St Y. DA~ o w0 L

Fplp |-1.126278500 x 10718 | _4. 919007608 x 10718
Fgly |-1.801870820 x 10719 | -7.868871081 x 10-20
F 1 1,002632034 x 10719 | 4. 378903579 x 10720
Fgly | 1.590427852 x 10243 | 6.132080703 x 10242
Re Fg lg | 2.314099448 x 10742 | 1.825160653 x 10242
Fglg | 1.590427852 x 10?43 | 6132080703 x 10742
LF,lg | 3.643855508 x 10243 | 1.501448251 x 10243
Coeff 1 | 4.169401884 x 10310 | 5, 374372085 x 10-310
Coeff 2 | 8.776518558 x 10~344 | g. 368854307 x 10-344
we €0 £
Coeft; = 3 2
r s n12»31
zutoczo Eg
Coeft, = 5
2 s‘C
where ) - ; Bl

142




THE UNIVERSITY OF MICHIGAN
4386-1-T

CASE I

10

9 4

4+

e

t ettt — b
o .1 .,2 .3 .4 .5 .6 .7 .8 .9 1.0 1,112 1.3 1.4 1.5




CASE I

Summary of Values for ak = 102, 82 6, 000025

THE UNIVERSITY OF MICHIGAN
4386-1-T

c|E
6= 5x102 Values olé.{-l—
x W .5 r/a For x=,7 For xs= ,5
y . 9998905959 .9999384817 0 |1.8096432 x 102 5.2136187 x 10
t 3.500280060 2,500160139 .1 |1,7838734 x 10 5.1385115 x 10
n 2.404840387 x 103 2, 404835008 x 103 .2 [1.7084903 x 102 4.9164345 x 10
) 2, 236080556 x 105 2, 236079069 x 105 .3 |1,5817168 x 102 4, 5569609 x 10
M 5. 000447026 x 1010 5. 000480279 x 1010 .4 |1. 4146147 x 102 4,0755384 x 10
8 -1,87552 x 106 -1, 47648 x 108 .5 [1.2123270 x 102 3,4827458 x 10
£ 4.638354547 x 10-97 | 4,630144141x 1007 | 6 |9, 8343796 x 10 2,8333140 x 10
£, 3.646241238 x 10-8 3.532368146 x 10~7 .7 |7.3756387 x 10 2,1240478 x 10
< -2, 332968653 - .9998769634 .8 |4,8489892 x 10 1,3970166 x 10
e -2.788561642 . | -1,414126562 .9 |2.3573572 x 10 6,7917354
R -1, 201246835 x 10 -1,516656482 x 1023 (1,0 [3,0356136 x 104 | g, 4724674 x 10~6
T -5.556824512 x 1018 | -5 011324861 x 1018 .1 12.5078231 x10% |7, 2505840 x 10-6
R' -2,611720668 x 1020 | -1,090641618 x1020 1,2 [2.2038224 x10* |6, 1509190 x 10-6
T 3.020818349 x 1016 2.302445054 x 1016 f1.3 ]1,8470813 x104 |5, 1552463 x 10-6
£, -3,676783183 x 1078 1.2, 446310694 x10-8 1.4 [1.5208538 x104 |4, 2450169 x 10-6
L -9.267120418 x 10-56 | -4,413530897 x 1055  [1,5 |1, 2211892 x104 |3, 4083672 x 10-8
F 1.421535042 x 10°7 | 7,003544921 x 1078  [1.6 |0,4365436 x 10-5 |2, 8337610 x 10-6
F, 2.209760241§ x 107196 | 1,018226137)x 10719 |1"7 [s 8530496 x 10-5 | 1.9127019 x 10-6
F3 -3.832039965) x 107107 | -1 696764786)x 10107 |1.8 |4, 4333025 x10-5 |1 2373700 x 10~6
Fy 1,147162520 x 10204 | 5079880743 x 107205 1,9 |2, 1556305 x10-5 |6, 0164144 x 10-7
L 1, 347570470 x 10”7 1.347570466 x 10-7  |2.0 fo 0
I 8.015023185) x 1086 | g, 013856901 }x 1086
Iy -8,015023185) x 1086 | -8, 013856901) x 1086
I, 2,653635970 x 10182 | 2, 852850350 x 10182
F 5.800314707 x 1078 1,06320303: x 108 .91 [2,1130941 x 10 6.0806023
RoFe | 1.784838139 x 1078 4.853114861 x 109 | 92(1,8720750 x 10 5. 3936289
'F"e 1,728284623 x 10-8 | -6, 748558216 x 100 .93 [1, 6316944 x 10 4,7010883
8 4.918169934 x 1078 7.372337808 x 100 | 941, 3920462 x 10 4,0132505
I 2.787895257x10~7 | 2,787895257 x10~7 | .95 |1. 1550233 x 10 3. 3303830
R, 3, 605254500 x 10~7 3, 605254500 x 10-7 .98 9. 2071729 2,6527501
:’ 8. 762842367 x 10~7 8.762842367 x 10~7 .97[6, 8741914 1,9806136
\ 1.815610857 x 10°14 | 1 077186505 x 1014 | .98 l4. 5611031 1, 3142336
Falp  |-1.843263165 x 10719  |.8,150918555 x 10-20 | _ 99 |2, 2691461 . 65388399
F3ly  [-3.071388917 x 10720  |-1 389763010 x 10720 | .god1. 1314051 . 32608387
AN 3.044151727 x 10732 | 1 347616341 x 1032 | 99ds. 5160701 x 1071 .13021180
Fgls 1,617066986 x 10714 | 2 064008609 x 1071 . 9942, 2552059 x 101 | g, 5065232 x 10-2
RoFglg | 1.616879755 x10-25 | 3,631098763 x 10715
Fglg 4.300714767 x 1014 | 6, 460263407 x 10-15
IF,l, |8.165756107x 10714 | 2, 745832062 x 10-14
Coeff; | 3,618962810 x 109 1,042623596 x 109
Coeff, | 4.200826659 x 10-4 1, 172460375 x 10-5
coutt we e Ez
1 2
T sz(p3+n'1 )Z
2
e e §
Coetf, =

— |7
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CASE I
ka = 7x103, B2 - 6,005102041 .
§= 5x10% Values of i.ll.;'
X i .5 r/al Forxs=.7 Forxs=_5
y . 9779975504 . 9876519579 0 |7.125480252 8.421984918
f 3. 555076389 2,532007921 .1 |7.022644030 8. 300472142
n 2, 407251260 x 108 2, 406684664 x 103 .2 |6.718529845 7.941190526
P 1,566993507 x 104 1, 566800030 x 104 .3 |6, 226294257 7. 359653509
M 2, 494896933 x 108 2,498167021 x 108 .4 |5.56713003¢ 6. 580887224
8 -1.8520304 x 108 -1,4616625 x 106 .5 |4. 769275220 5. 638235456
N 2,343388642 x 10~7 2, 353220927 x 10°7 .6 |3.866659658 4,571767509
£ 2,793267998 x 10-4 1,570658319 x10% | .7 |2, 897321348 3, 426384461
€ -2, 259991865 -.9753039158 .8 |1.901712098 2, 240848394
¢ -2.727504880 -1,396750794 .9 [9.213164880 x 1071 | 1,090918066
R 2.045747178 x 107 | -2, 600475240 x 1017 1.0 |0, 224264276 x 10~ | 6,120093715 x 1074
T -1,873920396 x 1015 | -1,703190155 x 1075 1.1 |7.893958174 x10™* | 5,238235476 x 1074
R' -4.326419710 x 1014 | -3,326038201 x 1014 1,2 |6.6086715401 x 10~4 | 4,443774772 x 1074
T 1.021026696 x 1013 7.847629400 x 1012 1,3 [5,612692550 x 1074 | 3,724444016 x 1074
&3 -6.973370110 x 106 | 4, 646027041 x10°6  [1.4 [4,621684767 x 104 | 3,066842382 x 10~4
L -2.340389651 x 10745 | -1,090450853 x 104  [1,5 |3,710805671 x 104 | 2, 462398898 x 10-4
F 2.794648081 x 10°5 1,575790576 x 105 [1.6 |2,867465463 x 10~ | 1,802779187 x 10°4
F, 3.235412563) x 10713 | 1,444443012§x10713 1,7 |2. 082423802 x 1074 | 1,381844950 x 10-4
Fy -5.153970917) x 10-4 | -2, 3231109255 x 10714 [1.8 [1.347166981 x 1074 | 8, 939467016 x 107
| 1.153484515 x 10720 | 5,155845188 x 1021  [1.9 |6,550275578 x 10~5 | 4, 346600927 x 10~5
L 1. 347567668 x 107 1.347568769 x 107 |2.0 Jo 0
I 2.099601048) x 102 | 2.096263246 x 10~
Iy -2,099601048) x 102 | -2,096263246) x 102
I 1, 256431006 x 104 1.251876824 x 104
Fy 5. 104127906 x 1076 2. 138824275 x 10
R,F, | 2.100232969 x 108 9, 107530442 x 10~7
IoFg |-1.856345443x10°6 | -0, 465068673 x 10~7
Fg 3.768417259 x 1078 1.551161837 x 1078
I 2.787895257 x 10-7 2,787895257 x 10~7
Rely | 3.60528450 x 1077 3,60525450 x 10-7
Ig 8. 762842367 x 10°7 8.762842367 x 107
r 3765977397 x 1072 | 2,123486167 x 10712
Fol, |-6.793075608 x 10715 | -3,027934684 x 10715
Fgls  [-1.082128274x 10715 | -4.869652048 x 10718
Fjly | 1.449286274x10-18 | 6, 454480521 x 10717
Fgly | 1.422977308 x 10712 - | 5,962818052 x 10713
RoFglg | 1.277961831 x 10712 | 5,922509428 x 10-13
Fglg | 3.302204641x 10712 | 1, 359258666 x 10712
Fele 1.108935282 x 10-}! | 5,260078140 x 10712
Coeft; | 2,856020500x108 | 3,371265747 x 1078
Coett, | 1,276497612 x 103 8. 470522556 x 1074
W€ EC 3
Coett, = 2 3 zj 2)y
{5 +n®)
Wwe g0 €§
2 # %
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